How to use this tutorial?
The source code for the python scripts and the markdown files are available on
but I strongly recommend reading this tutorial on our website:
Snippets of the code will be shown as we progress, but you don't have to copy them one by one as the full code is always available at the end of each step. However, I do recommend you to translate it into your own code in order to have a better understanding.
Step 1: Initial setup
Welcome to the first step of 5 steps to N-body simulation! This is a series of tutorials with the goal of teaching beginners how to write fast and clean N-body gravity simulations code in Python. In this step, we will set up the required python environment and implement some basic functions to be used in the following steps.
First of all, make sure you have Python 3 installed (to be safe, I recommend Python 3.9 or later). You can check the installation by running the following command in your terminal:
Two packages are required for this tutorial: numpy
and matplotlib
.
They are popular packages in Python for scientific computing and data visualization.
You can install them using pip
:
Now we are ready to start coding. First, let us create two files:
common.py
: This file will contain the common functions and classes used in all steps.step1.py
: This file will contain the code for this step.
We first focus on common.py
. Import the required packages:
System
To keep the code clean and organized, we will create a class called System
to represent the N-body system. It has the following attributes:
num_particles (float)
: Number of particles N in the system.x (np.ndarray)
: Positions of the particles in 3D space (shape: (N, 3)).v (np.ndarray)
: Velocities of the particles in 3D space (shape: (N, 3)).m (np.ndarray)
: Masses of the particles (shape: (N,)).G (float)
: Gravitational constant.
class System:
def __init__(
self, num_particles: int, x: np.ndarray, v: np.ndarray, m: np.ndarray, G: float
) -> None:
self.num_particles = num_particles
self.x = x
self.v = v
self.m = m
self.G = G
We will also implement a method to set the center of mass position and velocity to zero. This is to prevent drifting of the system during the simulation, and to set the center of mass of the system to the origin. To do this, we subtract the center of mass position and velocity from the particles,
where \(M\) is the total mass of the system, \(m_i\), \(\mathbf{r}_i\), and \(\mathbf{v}_i\) are the mass,
position, and velocity of the i-th particle respectively. If you don't care about the
performance, you may just use a for loop to iterate over all particles. By the way,
x_cm
is a 3D vector, m[i]
is a scalar, and self.x[i]
is a 3D vector.
class System:
...
def center_of_mass_correction(self) -> None:
"""Set center of mass of position and velocity to zero"""
x_cm = np.zeros(3)
v_cm = np.zeros(3)
M = 0.0
for i in range(self.num_particles):
x_cm += self.m[i] * self.x[i]
v_cm += self.m[i] * self.v[i]
M += self.m[i]
x_cm /= M
v_cm /= M
self.x -= x_cm
self.v -= v_cm
Optimization
Python loops are very slow.
Here, we introduce a more efficient approach using numpy
's broadcasting feature.
First, we compute \(m_i \mathbf{r}_i\) as
np.newaxis
is used to "broadcast" the mass array along axis 1 (column).
The shape of self.m[:, np.newaxis]
is now (N, 1)
and the shape of self.x
is (N, 3)
.
The multiplication is then done element-wise as
Then, to get \(\sum_{i = 1}^N m_i \mathbf{r}_i\) we perform the summation along the axis 0 (row) with length N
by
np.einsum
.
Why i,ij->j
? Denote the axis 0 and 1 as \(i\) and \(j\) respectively.
m
is a 1D vector broadcasted along axis 1: \(i\)x
is a 2D vector: \(ij\)- Final sum is done along axis 0: \(ij \to j\)
Finally, the total mass \(M\) can be simply computed as
Putting it all together, we have the following code:Initial conditions (Solar System)
With the System
class ready, we can now implement a function to get the initial conditions.
Since it is tedious to prepare the initial conditions, I have prepared the data for you.
Simply input the name of the system and it will return the initial conditions and information
for plotting.
Data Sources
The Solar System initial conditions at 1/Jan/2024 are generated using the JPL Horizons System1. Gravitational constant and masses of the solar system objects are calculated using the data from R.S. Park, et. al.2.
Tip
In our tutorial, we will stick with the following units:
- Length: AU (Astronomical Unit), i.e. the distance from the Earth to the Sun.
- Mass: \(M_\odot\) (Solar mass)
- Time: days
They are convenient units for solar system simulations. If you want to use different units, make sure to convert all data to the same units and be consistent.
Code (Click to expand)
def get_initial_conditions(
initial_condition: str,
) -> Tuple[System, List[Optional[str]], List[Optional[str]], bool]:
"""
Returns the initial conditions for solar system,
with units AU, days, and M_sun.
Parameters
----------
initial_condition : str
Name for the initial condition.
Returns
-------
system: System
System object with initial conditions.
labels: list
Labels for the particles.
colors: list
Colors for the particles.
legend: bool
Whether to show the legend.
"""
# Conversion factor from km^3 s^-2 to AU^3 d^-2
CONVERSION_FACTOR = (86400**2) / (149597870.7**3)
# GM values (km^3 s^-2)
# ref: https://ssd.jpl.nasa.gov/doc/Park.2021.AJ.DE440.pdf
GM_KM_S = {
"Sun": 132712440041.279419,
"Mercury": 22031.868551,
"Venus": 324858.592000,
"Earth": 398600.435507,
"Mars": 42828.375816,
"Jupiter": 126712764.100000,
"Saturn": 37940584.841800,
"Uranus": 5794556.400000,
"Neptune": 6836527.100580,
"Moon": 4902.800118,
"Pluto": 975.500000,
"Ceres": 62.62890,
"Vesta": 17.288245,
}
# GM values (AU^3 d^-2)
GM_AU_DAY = {
"Sun": 132712440041.279419 * CONVERSION_FACTOR,
"Mercury": 22031.868551 * CONVERSION_FACTOR,
"Venus": 324858.592000 * CONVERSION_FACTOR,
"Earth": 398600.435507 * CONVERSION_FACTOR,
"Mars": 42828.375816 * CONVERSION_FACTOR,
"Jupiter": 126712764.100000 * CONVERSION_FACTOR,
"Saturn": 37940584.841800 * CONVERSION_FACTOR,
"Uranus": 5794556.400000 * CONVERSION_FACTOR,
"Neptune": 6836527.100580 * CONVERSION_FACTOR,
"Moon": 4902.800118 * CONVERSION_FACTOR,
"Pluto": 975.500000 * CONVERSION_FACTOR,
"Ceres": 62.62890 * CONVERSION_FACTOR,
"Vesta": 17.288245 * CONVERSION_FACTOR,
}
# Solar system masses (M_sun^-1)
SOLAR_SYSTEM_MASSES = {
"Sun": 1.0,
"Mercury": GM_KM_S["Mercury"] / GM_KM_S["Sun"],
"Venus": GM_KM_S["Venus"] / GM_KM_S["Sun"],
"Earth": GM_KM_S["Earth"] / GM_KM_S["Sun"],
"Mars": GM_KM_S["Mars"] / GM_KM_S["Sun"],
"Jupiter": GM_KM_S["Jupiter"] / GM_KM_S["Sun"],
"Saturn": GM_KM_S["Saturn"] / GM_KM_S["Sun"],
"Uranus": GM_KM_S["Uranus"] / GM_KM_S["Sun"],
"Neptune": GM_KM_S["Neptune"] / GM_KM_S["Sun"],
"Moon": GM_KM_S["Moon"] / GM_KM_S["Sun"],
"Pluto": GM_KM_S["Pluto"] / GM_KM_S["Sun"],
"Ceres": GM_KM_S["Ceres"] / GM_KM_S["Sun"],
"Vesta": GM_KM_S["Vesta"] / GM_KM_S["Sun"],
}
G = GM_AU_DAY["Sun"]
# Solar system position and velocities data
# Units: AU-D
# Coordinate center: Solar System Barycenter
# Data dated on A.D. 2024-Jan-01 00:00:00.0000 TDB
# Computational data generated by NASA JPL Horizons System https://ssd.jpl.nasa.gov/horizons/
SOLAR_SYSTEM_POS = {
"Sun": [-7.967955691533730e-03, -2.906227441573178e-03, 2.103054301547123e-04],
"Mercury": [
-2.825983269538632e-01,
1.974559795958082e-01,
4.177433558063677e-02,
],
"Venus": [
-7.232103701666379e-01,
-7.948302026312400e-02,
4.042871428174315e-02,
],
"Earth": [-1.738192017257054e-01, 9.663245550235138e-01, 1.553901854897183e-04],
"Mars": [-3.013262392582653e-01, -1.454029331393295e00, -2.300531433991428e-02],
"Jupiter": [3.485202469657674e00, 3.552136904413157e00, -9.271035442798399e-02],
"Saturn": [8.988104223143450e00, -3.719064854634689e00, -2.931937777323593e-01],
"Uranus": [1.226302417897505e01, 1.529738792480545e01, -1.020549026883563e-01],
"Neptune": [
2.983501460984741e01,
-1.793812957956852e00,
-6.506401132254588e-01,
],
"Moon": [-1.762788124769829e-01, 9.674377513177153e-01, 3.236901585768862e-04],
"Pluto": [1.720200478843485e01, -3.034155683573043e01, -1.729127607100611e00],
"Ceres": [-1.103880510367569e00, -2.533340440444230e00, 1.220283937721780e-01],
"Vesta": [-8.092549658731499e-02, 2.558381434460076e00, -6.695836142398572e-02],
}
SOLAR_SYSTEM_VEL = {
"Sun": [4.875094764261564e-06, -7.057133213976680e-06, -4.573453713094512e-08],
"Mercury": [
-2.232165900189702e-02,
-2.157207103176252e-02,
2.855193410495743e-04,
],
"Venus": [
2.034068201002341e-03,
-2.020828626592994e-02,
-3.945639843855159e-04,
],
"Earth": [
-1.723001232538228e-02,
-2.967721342618870e-03,
6.382125383116755e-07,
],
"Mars": [1.424832259345280e-02, -1.579236181580905e-03, -3.823722796161561e-04],
"Jupiter": [
-5.470970658852281e-03,
5.642487338479145e-03,
9.896190602066252e-05,
],
"Saturn": [
1.822013845554067e-03,
5.143470425888054e-03,
-1.617235904887937e-04,
],
"Uranus": [
-3.097615358317413e-03,
2.276781932345769e-03,
4.860433222241686e-05,
],
"Neptune": [
1.676536611817232e-04,
3.152098732861913e-03,
-6.877501095688201e-05,
],
"Moon": [
-1.746667306153906e-02,
-3.473438277358121e-03,
-3.359028758606074e-05,
],
"Pluto": [2.802810313667557e-03, 8.492056438614633e-04, -9.060790113327894e-04],
"Ceres": [
8.978653480111301e-03,
-4.873256528198994e-03,
-1.807162046049230e-03,
],
"Vesta": [
-1.017876585480054e-02,
-5.452367109338154e-04,
1.255870551153315e-03,
],
}
SOLAR_SYSTEM_COLORS = {
"Sun": "orange",
"Mercury": "slategrey",
"Venus": "wheat",
"Earth": "skyblue",
"Mars": "red",
"Jupiter": "darkgoldenrod",
"Saturn": "gold",
"Uranus": "paleturquoise",
"Neptune": "blue",
}
SOLAR_SYSTEM_PLUS_COLORS = {
"Sun": "orange",
"Mercury": "slategrey",
"Venus": "wheat",
"Earth": "skyblue",
"Mars": "red",
"Jupiter": "darkgoldenrod",
"Saturn": "gold",
"Uranus": "paleturquoise",
"Neptune": "blue",
"Pluto": None,
"Ceres": None,
"Vesta": None,
}
if initial_condition == "pyth-3-body":
# Pythagorean 3-body problem
R1 = np.array([1.0, 3.0, 0.0])
R2 = np.array([-2.0, -1.0, 0.0])
R3 = np.array([1.0, -1.0, 0.0])
V1 = np.array([0.0, 0.0, 0.0])
V2 = np.array([0.0, 0.0, 0.0])
V3 = np.array([0.0, 0.0, 0.0])
x = np.array([R1, R2, R3])
v = np.array([V1, V2, V3])
m = np.array([3.0 / G, 4.0 / G, 5.0 / G])
system = System(
num_particles=len(m),
x=x,
v=v,
m=m,
G=G,
)
system.center_of_mass_correction()
labels: List[Optional[str]] = [None, None, None]
colors: List[Optional[str]] = [None, None, None]
legend = False
return system, labels, colors, legend
elif initial_condition == "solar_system":
m = np.array(
[
SOLAR_SYSTEM_MASSES["Sun"],
SOLAR_SYSTEM_MASSES["Mercury"],
SOLAR_SYSTEM_MASSES["Venus"],
SOLAR_SYSTEM_MASSES["Earth"],
SOLAR_SYSTEM_MASSES["Mars"],
SOLAR_SYSTEM_MASSES["Jupiter"],
SOLAR_SYSTEM_MASSES["Saturn"],
SOLAR_SYSTEM_MASSES["Uranus"],
SOLAR_SYSTEM_MASSES["Neptune"],
]
)
R1 = np.array(SOLAR_SYSTEM_POS["Sun"])
R2 = np.array(SOLAR_SYSTEM_POS["Mercury"])
R3 = np.array(SOLAR_SYSTEM_POS["Venus"])
R4 = np.array(SOLAR_SYSTEM_POS["Earth"])
R5 = np.array(SOLAR_SYSTEM_POS["Mars"])
R6 = np.array(SOLAR_SYSTEM_POS["Jupiter"])
R7 = np.array(SOLAR_SYSTEM_POS["Saturn"])
R8 = np.array(SOLAR_SYSTEM_POS["Uranus"])
R9 = np.array(SOLAR_SYSTEM_POS["Neptune"])
V1 = np.array(SOLAR_SYSTEM_VEL["Sun"])
V2 = np.array(SOLAR_SYSTEM_VEL["Mercury"])
V3 = np.array(SOLAR_SYSTEM_VEL["Venus"])
V4 = np.array(SOLAR_SYSTEM_VEL["Earth"])
V5 = np.array(SOLAR_SYSTEM_VEL["Mars"])
V6 = np.array(SOLAR_SYSTEM_VEL["Jupiter"])
V7 = np.array(SOLAR_SYSTEM_VEL["Saturn"])
V8 = np.array(SOLAR_SYSTEM_VEL["Uranus"])
V9 = np.array(SOLAR_SYSTEM_VEL["Neptune"])
x = np.array(
[
R1,
R2,
R3,
R4,
R5,
R6,
R7,
R8,
R9,
]
)
v = np.array(
[
V1,
V2,
V3,
V4,
V5,
V6,
V7,
V8,
V9,
]
)
system = System(
num_particles=len(m),
x=x,
v=v,
m=m,
G=G,
)
system.center_of_mass_correction()
labels = list(SOLAR_SYSTEM_POS.keys())
colors = list(SOLAR_SYSTEM_COLORS.values())
legend = True
return system, labels, colors, legend
elif initial_condition == "solar_system_plus":
m = np.array(
[
SOLAR_SYSTEM_MASSES["Sun"],
SOLAR_SYSTEM_MASSES["Mercury"],
SOLAR_SYSTEM_MASSES["Venus"],
SOLAR_SYSTEM_MASSES["Earth"],
SOLAR_SYSTEM_MASSES["Mars"],
SOLAR_SYSTEM_MASSES["Jupiter"],
SOLAR_SYSTEM_MASSES["Saturn"],
SOLAR_SYSTEM_MASSES["Uranus"],
SOLAR_SYSTEM_MASSES["Neptune"],
SOLAR_SYSTEM_MASSES["Pluto"],
SOLAR_SYSTEM_MASSES["Ceres"],
SOLAR_SYSTEM_MASSES["Vesta"],
]
)
R1 = np.array(SOLAR_SYSTEM_POS["Sun"])
R2 = np.array(SOLAR_SYSTEM_POS["Mercury"])
R3 = np.array(SOLAR_SYSTEM_POS["Venus"])
R4 = np.array(SOLAR_SYSTEM_POS["Earth"])
R5 = np.array(SOLAR_SYSTEM_POS["Mars"])
R6 = np.array(SOLAR_SYSTEM_POS["Jupiter"])
R7 = np.array(SOLAR_SYSTEM_POS["Saturn"])
R8 = np.array(SOLAR_SYSTEM_POS["Uranus"])
R9 = np.array(SOLAR_SYSTEM_POS["Neptune"])
R10 = np.array(SOLAR_SYSTEM_POS["Pluto"])
R11 = np.array(SOLAR_SYSTEM_POS["Ceres"])
R12 = np.array(SOLAR_SYSTEM_POS["Vesta"])
V1 = np.array(SOLAR_SYSTEM_VEL["Sun"])
V2 = np.array(SOLAR_SYSTEM_VEL["Mercury"])
V3 = np.array(SOLAR_SYSTEM_VEL["Venus"])
V4 = np.array(SOLAR_SYSTEM_VEL["Earth"])
V5 = np.array(SOLAR_SYSTEM_VEL["Mars"])
V6 = np.array(SOLAR_SYSTEM_VEL["Jupiter"])
V7 = np.array(SOLAR_SYSTEM_VEL["Saturn"])
V8 = np.array(SOLAR_SYSTEM_VEL["Uranus"])
V9 = np.array(SOLAR_SYSTEM_VEL["Neptune"])
V10 = np.array(SOLAR_SYSTEM_VEL["Pluto"])
V11 = np.array(SOLAR_SYSTEM_VEL["Ceres"])
V12 = np.array(SOLAR_SYSTEM_VEL["Vesta"])
x = np.array(
[
R1,
R2,
R3,
R4,
R5,
R6,
R7,
R8,
R9,
R10,
R11,
R12,
]
)
v = np.array(
[
V1,
V2,
V3,
V4,
V5,
V6,
V7,
V8,
V9,
V10,
V11,
V12,
]
)
system = System(
num_particles=len(m),
x=x,
v=v,
m=m,
G=G,
)
system.center_of_mass_correction()
labels = list(SOLAR_SYSTEM_POS.keys())
colors = list(SOLAR_SYSTEM_PLUS_COLORS.values())
legend = True
return system, labels, colors, legend
else:
raise ValueError(f"Initial condition not recognized: {initial_condition}.")
Plotting initial conditions
Finally, we will implement a function to plot the initial conditions of the solar system.
We will use the matplotlib
package to plot the positions of the particles in 2D.
Colors and labels are optional, but they make the plot look nicer.
If plt.show()
does not work in your environment, you may need to change it to
plt.savefig(file_name)
to save the plot.
def plot_initial_conditions(
system: System,
labels: list,
colors: list,
legend: bool,
) -> None:
"""
Plot the initial positions.
Parameters
----------
system : System
System object.
labels : list
Labels for the particles.
colors : list
Colors for the particles.
legend : bool
Whether to show the legend.
"""
fig, ax = plt.subplots()
ax.set_xlabel("$x$ (AU)")
ax.set_ylabel("$y$ (AU)")
for i in range(system.num_particles):
ax.scatter(
system.x[i, 0], system.x[i, 1], marker="o", color=colors[i], label=labels[i]
)
if legend:
ax.legend()
plt.show() # Here, you may need to change to plt.savefig(file_name) if
# plt.show() does not work in your environment.
Test the code
Now we could try to run the code with step1.py
.
As you run the code, you should see the following output:
Number of particles: 9
Initial positions (AU):
[[-7.96712825e-03 -2.90611166e-03 2.10213120e-04]
[-2.82597500e-01 1.97456095e-01 4.17742433e-02]
[-7.23209543e-01 -7.94829045e-02 4.04286220e-02]
[-1.73818374e-01 9.66324671e-01 1.55297876e-04]
[-3.01325412e-01 -1.45402922e+00 -2.30054066e-02]
[ 3.48520330e+00 3.55213702e+00 -9.27104467e-02]
[ 8.98810505e+00 -3.71906474e+00 -2.93193870e-01]
[ 1.22630250e+01 1.52973880e+01 -1.02054995e-01]
[ 2.98350154e+01 -1.79381284e+00 -6.50640206e-01]]
Initial velocities (AU/day):
[[ 4.87524241e-06 -7.05716139e-06 -4.57929038e-08]
[-2.23216589e-02 -2.15720711e-02 2.85519283e-04]
[ 2.03406835e-03 -2.02082863e-02 -3.94564043e-04]
[-1.72300122e-02 -2.96772137e-03 6.38154172e-07]
[ 1.42483227e-02 -1.57923621e-03 -3.82372338e-04]
[-5.47097051e-03 5.64248731e-03 9.89618477e-05]
[ 1.82201399e-03 5.14347040e-03 -1.61723649e-04]
[-3.09761521e-03 2.27678190e-03 4.86042739e-05]
[ 1.67653809e-04 3.15209870e-03 -6.87750693e-05]]
Masses (M_sun):
[1.00000000e+00 1.66012083e-07 2.44783829e-06 3.00348962e-06
3.22715608e-07 9.54791910e-04 2.85885670e-04 4.36624961e-05
5.15138377e-05]
Gravitational constant (AU^3 / day^2 / M_sun): 0.00029591220828411956
Full scripts
The full scripts are available at 5_steps_to_n_body_simulation/python/
,
or https://github.com/alvinng4/grav_sim/blob/main/5_steps_to_n_body_simulation/python/
step1.py (Click to expand)
common.py (Click to expand)
5_steps_to_n_body_simulation/python/common.py | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
|
-
Jet Propulsion Laboratory. Horizons system. 2024. Accessed: April 2024. URL: https://ssd.jpl.nasa.gov/horizons/. ↩
-
Ryan S. Park, William M. Folkner, James G. Williams, and Dale H. Boggs. The jpl planetary and lunar ephemerides de440 and de441. The Astronomical Journal, 161(3):105, feb 2021. doi:10.3847/1538-3881/abd414. ↩