Skip to content

Step 4: Higher-order algorithms

In the last step, we implemented a simple Euler method to integrate the solar system for 200 years. The poor accuracy is expected, because we used a simple first order algorithm with global error \(\mathcal{O}(\Delta t)\). In this step, we will implement 3 new algorithms to improve our simulation.

Relative energy error

Before implementing new algorithms, we need a way to measure the accuracy of the simulation. By conservation of energy, we can assume that better algorithms will have a better conservation on the total energy of the system. Computing the total energy is trivial. All we need is the solution array.

\[ \text{Total Energy} = \overset{\text{KE}}{\overbrace{\sum_{i=1}^{N} \frac{1}{2} m_i v_i^2}} - \overset{\text{PE}}{\overbrace{\sum_{i=1}^{N} \sum_{j = i + 1}^{N} \frac{G m_i m_j}{r_{ij}}}}. \]

Then, we can compute the relative energy error as

\[ \text{Relative Energy Error} = \frac{|\text{Energy} - \text{Initial Energy}|}{\text{Initial Energy}}. \]

This gives the following code:

common.py
def compute_rel_energy_error(
    sol_x: np.ndarray, sol_v: np.ndarray, system: System
) -> np.ndarray:
    """
    Compute the relative energy error of the simulation.

    Parameters
    ----------
    sol_x : np.ndarray
        Solution position array with shape (N_steps, num_particles, 3).
    sol_v : np.ndarray
        Solution velocity array with shape (N_steps, num_particles, 3).
    system : System
        System object.

    Returns
    -------
    energy_error : np.ndarray
        Relative energy error of the simulation, with shape (N_steps,).
    """
    # Allocate memory and initialize arrays
    n_steps = sol_x.shape[0]
    num_particles = system.num_particles
    m = system.m
    G = system.G
    rel_energy_error = np.zeros(n_steps)

    # Compute the total energy (KE + PE)
    for count in range(n_steps):
        x = sol_x[count]
        v = sol_v[count]
        for i in range(num_particles):
            # KE
            rel_energy_error[count] += 0.5 * m[i] * np.linalg.norm(v[i]) ** 2
            # PE
            for j in range(i + 1, num_particles):
                rel_energy_error[count] -= G * m[i] * m[j] / np.linalg.norm(x[i] - x[j])

    # Compute the relative energy error
    initial_energy = rel_energy_error[0]
    rel_energy_error = (rel_energy_error - initial_energy) / initial_energy
    rel_energy_error = np.abs(rel_energy_error)

    return rel_energy_error

Tip

If you found it too slow, you are encouraged to vectorize it, just like what we did in step 2

Now, we can plot the relative energy error with the following code, where y-axis is in log scale.

common.py
def plot_rel_energy_error(rel_energy_error: np.ndarray, sol_t: np.ndarray) -> None:
    """
    Plot the relative energy error.

    Parameters
    ----------
    rel_energy_error : np.ndarray
        Relative energy error of the simulation, with shape (N_steps,).
    sol_t : np.ndarray
        Solution time array with shape (N_steps,).
    """
    plt.figure()
    plt.plot(sol_t, rel_energy_error)
    plt.yscale("log")
    plt.xlabel("Time step")
    plt.ylabel("Relative Energy Error")
    plt.title("Relative Energy Error vs Time Step")
    plt.show()

We copy step3.py to step4.py and add the following code to the end of the main function:

step4.py
def main() -> None:
    ...
    # Compute and plot relative energy error
    rel_energy_error = compute_rel_energy_error(sol_x, sol_v, system)
    print(f"Relative energy error: {rel_energy_error[-1]:.3g}")
    plot_rel_energy_error(rel_energy_error, sol_t / 365.24)

Euler method

Let us run the simulation again. We have the following plots:

Trajectory Relative Energy Error

The final relative energy error \(\sim 10^{-1}\), which is not very good.

Euler-Cromer method

Now, we begin implementing our first new algorithm. The Euler-Cromer method, also known as semi-implicit Euler method, is a simple modification of the Euler method,

\[ \mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{a}(\mathbf{r}_n) \Delta t, \]
\[ \mathbf{r}_{n+1} = \mathbf{r}_n + \mathbf{v}_{n+1} \Delta t. \]

Notice that the position update is done using the updated velocity \(\mathbf{v}_{n+1}\) instead of \(\mathbf{v}_n\). Therefore, it is an first order semi-implicit method. Although the global error is still \(\mathcal{O}(\Delta t)\), it is a symplectic method, which implies that the energy error over time is bounded. This is a very useful property for long time-scale simulations. We have the following code:

common.py
def euler_cromer(a: np.ndarray, system: System, dt: float) -> None:
    """
    Advance one step with the Euler-Cromer method.

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array with shape (N, 3).
    system : System
        System object.
    dt : float
        Time step.
    """
    acceleration(a, system)
    system.v += a * dt
    system.x += system.v * dt

Running the simulation again, we have the following plots:

Trajectory Relative Energy Error

The trajectory looks a lot better than the Euler method! Also, the relative energy error is bounded at \(\sim 10^{-4}\). This provides long term stability for the simulation.

Energy conservation \(\iff\) Higher accuracy?

Although it seems like energy conservation implies higher accuracy, this is not neccessarily true. Recall that the global error for Euler-Cromer method is still \(\mathcal{O}(\Delta t)\), even though its energy error is bounded over time. Therefore, we can only state the opposite direction: Higher accuracy \(\implies\) Energy conservation.

Runge-Kutta method

The Runge-Kutta method is a family of ODE solvers. First, let us look at a second order variation called the midpoint method.

  • In the Euler method, we are using the slope evaluated at the beginning of the interval to update the position and velocity.

  • In the Euler-Cromer method, for the position update, we are using the slope evaluated at the end instead.

What about using the slope evaluated at the center of the interval? We can approximate the position and velocity at the midpoint using one Euler step, then perform the updates using the midpoint values. This gives us the following updates:

\[ x_{n+1} = x_n + f\left(t_n + \frac{1}{2} \Delta t, x + \frac{1}{2} f(t_n) \Delta t \right) \Delta t. \]

Using a more general notation, we can write the midpoint method as

\[ \begin{aligned} k_1 &= f(t_n, x_n), \\ k_2 &= f\left(t_n + \frac{1}{2} \Delta t, x_n + \frac{1}{2} k_1 \Delta t \right), \\ x_{n+1} &= x_n + k_2 \Delta t + \mathcal{O}(\Delta t^3). \end{aligned} \]

A simple taylor expansion will shows that the local truncation error is indeed \(\mathcal{O}(\Delta t^3)\), which means that it is a second order method. A more commonly used Runge-Kutta method is the 4th order Runge-Kutta method (RK4), which provides a good balance between accuracy and computational cost. It is given by

\[ \begin{aligned} k_1 &= f(t_n, x_n), \\ k_2 &= f\left(t_n + \frac{1}{2} \Delta t, x_n + \frac{1}{2} k_1 \Delta t \right), \\ k_3 &= f\left(t_n + \frac{1}{2} \Delta t, x_n + \frac{1}{2} k_2 \Delta t \right), \\ k_4 &= f(t_n + \Delta t, x_n + k_3 \Delta t), \\ x_{n+1} &= x_n + \frac{1}{6} (k_1 + 2 k_2 + 2 k_3 + k_4) \Delta t + \mathcal{O}(\Delta t^5). \end{aligned} \]

In our code, we can write out the computation of each term explicitly. However, I prefer a more general approach by defining the coeff and weights arrays instead. The coeff array is given as

\[ \text{coeff} = \begin{bmatrix} 1/2, 1/2, 1 \end{bmatrix} \]

for the computation of \(k_2\), \(k_3\) and \(k_4\). The weights array is given as

\[ \text{weights} = \begin{bmatrix} 1/6, 1/3, 1/3, 1/6 \end{bmatrix} \]

for the final update. The code is given as follows:

common.py
def rk4(a: np.ndarray, system: System, dt: float) -> None:
    """
    Advance one step with the RK4 method.

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array with shape (N, 3).
    system : System
        System object.
    dt : float
        Time step.
    """
    num_stages = 4
    coeff = np.array([0.5, 0.5, 1.0])
    weights = np.array([1.0, 2.0, 2.0, 1.0]) / 6.0

    # Allocate memory and initialize arrays
    x0 = system.x.copy()
    v0 = system.v.copy()
    xk = np.zeros((num_stages, system.num_particles, 3))
    vk = np.zeros((num_stages, system.num_particles, 3))

    # Initial stage
    acceleration(a, system)
    xk[0] = v0
    vk[0] = a

    # Compute the stages
    for stage in range(1, num_stages):
        # Compute acceleration
        system.x = x0 + dt * coeff[stage - 1] * xk[stage - 1]
        acceleration(a, system)

        # Compute xk and vk
        xk[stage] = v0 + dt * coeff[stage - 1] * vk[stage - 1]
        vk[stage] = a

    # Advance step
    dx = 0.0
    dv = 0.0
    for stage in range(num_stages):
        dx += weights[stage] * xk[stage]
        dv += weights[stage] * vk[stage]

    system.x = x0 + dt * dx
    system.v = v0 + dt * dv

Tip

The final loop can be vectorized to improve performance:

dx = np.einsum("i,ijk->jk", weights, xk)
dv = np.einsum("i,ijk->jk", weights, vk)

Let's run the simulation again. We only show the relative energy error plot:

Relative Energy Error

The final error is in the order of \(10^{-6}\), which is quite nice. However, the error is growing over time, so this may not be a good choice for long term simulations.

Leapfrog method

Our final algorithm is the leapfrog method, which is a second-order symplectic method. Similar to the Euler-Cromer method, it conserves energy over time. We will implement the Kick-Drift-Kick (KDK) variant, which is given by a velocity kick for half time step,

\[ \mathbf{v}_{n+1/2} = \mathbf{v}_n + \frac{1}{2} \mathbf{a}(\mathbf{r}_n) \Delta t, \]

a position drift for a full time step,

\[ \mathbf{r}_{n+1} = \mathbf{r}_n + \mathbf{v}_{n+1/2} \Delta t, \]

and a final velocity kick for half time step,

\[ \mathbf{v}_{n+1} = \mathbf{v}_{n+1/2} + \frac{1}{2} \mathbf{a}(\mathbf{r}_{n+1}) \Delta t. \]

Tip

For optimization, you can combine the final velocity kick from the last time step with the first velocity kick. However, you need to be careful because now the velocity and position is not synchronized. There is also a synchronized version of the leapfrog method called the velocity Verlet method.

The implementation is simple:

def leapfrog(a: np.ndarray, system: System, dt: float) -> None:
    """
    Advance one step with the LeapFrog method.

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array with shape (N, 3).
    system : System
        System object.
    dt : float
        Time step.
    """
    # Velocity kick (v_1/2)
    acceleration(a, system)
    system.v += a * 0.5 * dt

    # Position drift (x_1)
    system.x += system.v * dt

    # Velocity kick (v_1)
    acceleration(a, system)
    system.v += a * 0.5 * dt

Running the simulation again, we have the relative energy error plot:

Relative Energy Error

The relative energy error is bounded at \(\sim 10^{-6}\), which is better than the Euler-Cromer method!

Which algorithm should I choose?

To choose between RK4 and LeapFrog, below are some factors that you may consider:

  • Time scale: If you are simulating a long time scale, LeapFrog should be better as it conserves energy.
  • Accuracy: If accuracy matters to you, then RK4 is a better choice since it is higher order.
  • Computational cost: RK4 is very expensive as it requires 4 acceleration evaluations per step. In contrast, LeapFrog only requires 1 acceleration evaluation although it is second order.
  • Experiment: If you are not sure which one to choose, you can always experiment and compare the results. Below is a relative energy error plot I made for the solar system simulation using both RK4 and LeapFrog. I chose two very small dt while ensuring that the runtime is the same for both methods. In terms of the results, seems like RK4 is better in this case, but note that I used some techniques to remove the rounding error. (See Reducing round off error)

    Relative energy error comparison

Summary

In this step, we have implemented 3 new algorithms: Euler-Cromer, RK4 and Leapfrog. RK4 and Leapfrog are both very popular algorithms for N-body simulations. All algorithms we implemented so far are fixed time step methods, which may not be very flexible for chaotic systems with close encounters. It is also a headache to tune the time step. In the next step, we will implement an adaptive time-stepping method which uses a tolerance parameter to control the time step instead.

Full scripts

The full scripts are available at 5_steps_to_n_body_simulation/python/, or https://github.com/alvinng4/grav_sim/blob/main/5_steps_to_n_body_simulation/python/

step4.py (Click to expand)
5_steps_to_n_body_simulation/python/step4.py
import timeit

import numpy as np

import common

INITIAL_CONDITION = "solar_system"

# Default units is AU, days, and M_sun
TF = 200.0 * 365.24  # years to days
DT = 1.0
OUTPUT_INTERVAL = 0.1 * 365.24  # years to days
NUM_STEPS = int(TF / DT)


def main() -> None:
    # Get initial conditions
    system, labels, colors, legend = common.get_initial_conditions(INITIAL_CONDITION)

    # Initialize memory
    a = np.zeros((system.num_particles, 3))

    # Solution array
    sol_size = int(TF // OUTPUT_INTERVAL + 2)  # +2 for initial and final time
    sol_x = np.zeros((sol_size, system.num_particles, 3))
    sol_v = np.zeros((sol_size, system.num_particles, 3))
    sol_t = np.zeros(sol_size)
    sol_x[0] = system.x
    sol_v[0] = system.v
    sol_t[0] = 0.0
    output_count = 1

    # Launch simulation
    common.print_simulation_info_fixed_step_size(
        system, TF, DT, NUM_STEPS, OUTPUT_INTERVAL, sol_size
    )
    next_output_time = output_count * OUTPUT_INTERVAL
    start = timeit.default_timer()
    for i in range(NUM_STEPS):
        common.leapfrog(a, system, DT)

        current_time = i * DT
        if current_time >= next_output_time:
            sol_x[output_count] = system.x
            sol_v[output_count] = system.v
            sol_t[output_count] = current_time

            output_count += 1
            next_output_time = output_count * OUTPUT_INTERVAL

            print(f"Current time: {current_time:.2f} days", end="\r")

    sol_x = sol_x[:output_count]
    sol_v = sol_v[:output_count]
    sol_t = sol_t[:output_count]

    end = timeit.default_timer()

    print()
    print(f"Done! Runtime: {end - start:.3g} seconds, Solution size: {output_count}")
    common.plot_trajectory(
        sol_x=sol_x,
        labels=labels,
        colors=colors,
        legend=legend,
    )

    # Compute and plot relative energy error
    rel_energy_error = common.compute_rel_energy_error(sol_x, sol_v, system)
    print(f"Relative energy error: {rel_energy_error[-1]:.3g}")
    common.plot_rel_energy_error(rel_energy_error, sol_t / 365.24)


if __name__ == "__main__":
    main()
common.py (Click to expand)
5_steps_to_n_body_simulation/python/common.py
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
from typing import Tuple, List, Optional

import numpy as np
import matplotlib.pyplot as plt


##### Step 1 #####
class System:
    def __init__(
        self, num_particles: int, x: np.ndarray, v: np.ndarray, m: np.ndarray, G: float
    ) -> None:
        self.num_particles = num_particles
        self.x = x
        self.v = v
        self.m = m
        self.G = G

    def center_of_mass_correction(self) -> None:
        """Set center of mass of position and velocity to zero"""
        M = np.sum(self.m)
        x_cm = np.einsum("i,ij->j", self.m, self.x) / M
        v_cm = np.einsum("i,ij->j", self.m, self.v) / M

        self.x -= x_cm
        self.v -= v_cm


def get_initial_conditions(
    initial_condition: str,
) -> Tuple[System, List[Optional[str]], List[Optional[str]], bool]:
    """
    Returns the initial conditions for solar system,
    with units AU, days, and M_sun.

    Parameters
    ----------
    initial_condition : str
        Name for the initial condition.

    Returns
    -------
    system: System
        System object with initial conditions.
    labels: list
        Labels for the particles.
    colors: list
        Colors for the particles.
    legend: bool
        Whether to show the legend.
    """
    # Conversion factor from km^3 s^-2 to AU^3 d^-2
    CONVERSION_FACTOR = (86400**2) / (149597870.7**3)

    # GM values (km^3 s^-2)
    # ref: https://ssd.jpl.nasa.gov/doc/Park.2021.AJ.DE440.pdf
    GM_KM_S = {
        "Sun": 132712440041.279419,
        "Mercury": 22031.868551,
        "Venus": 324858.592000,
        "Earth": 398600.435507,
        "Mars": 42828.375816,
        "Jupiter": 126712764.100000,
        "Saturn": 37940584.841800,
        "Uranus": 5794556.400000,
        "Neptune": 6836527.100580,
        "Moon": 4902.800118,
        "Pluto": 975.500000,
        "Ceres": 62.62890,
        "Vesta": 17.288245,
    }

    # GM values (AU^3 d^-2)
    GM_AU_DAY = {
        "Sun": 132712440041.279419 * CONVERSION_FACTOR,
        "Mercury": 22031.868551 * CONVERSION_FACTOR,
        "Venus": 324858.592000 * CONVERSION_FACTOR,
        "Earth": 398600.435507 * CONVERSION_FACTOR,
        "Mars": 42828.375816 * CONVERSION_FACTOR,
        "Jupiter": 126712764.100000 * CONVERSION_FACTOR,
        "Saturn": 37940584.841800 * CONVERSION_FACTOR,
        "Uranus": 5794556.400000 * CONVERSION_FACTOR,
        "Neptune": 6836527.100580 * CONVERSION_FACTOR,
        "Moon": 4902.800118 * CONVERSION_FACTOR,
        "Pluto": 975.500000 * CONVERSION_FACTOR,
        "Ceres": 62.62890 * CONVERSION_FACTOR,
        "Vesta": 17.288245 * CONVERSION_FACTOR,
    }

    # Solar system masses (M_sun^-1)
    SOLAR_SYSTEM_MASSES = {
        "Sun": 1.0,
        "Mercury": GM_KM_S["Mercury"] / GM_KM_S["Sun"],
        "Venus": GM_KM_S["Venus"] / GM_KM_S["Sun"],
        "Earth": GM_KM_S["Earth"] / GM_KM_S["Sun"],
        "Mars": GM_KM_S["Mars"] / GM_KM_S["Sun"],
        "Jupiter": GM_KM_S["Jupiter"] / GM_KM_S["Sun"],
        "Saturn": GM_KM_S["Saturn"] / GM_KM_S["Sun"],
        "Uranus": GM_KM_S["Uranus"] / GM_KM_S["Sun"],
        "Neptune": GM_KM_S["Neptune"] / GM_KM_S["Sun"],
        "Moon": GM_KM_S["Moon"] / GM_KM_S["Sun"],
        "Pluto": GM_KM_S["Pluto"] / GM_KM_S["Sun"],
        "Ceres": GM_KM_S["Ceres"] / GM_KM_S["Sun"],
        "Vesta": GM_KM_S["Vesta"] / GM_KM_S["Sun"],
    }

    G = GM_AU_DAY["Sun"]

    # Solar system position and velocities data
    # Units: AU-D
    # Coordinate center: Solar System Barycenter
    # Data dated on A.D. 2024-Jan-01 00:00:00.0000 TDB
    # Computational data generated by NASA JPL Horizons System https://ssd.jpl.nasa.gov/horizons/
    SOLAR_SYSTEM_POS = {
        "Sun": [-7.967955691533730e-03, -2.906227441573178e-03, 2.103054301547123e-04],
        "Mercury": [
            -2.825983269538632e-01,
            1.974559795958082e-01,
            4.177433558063677e-02,
        ],
        "Venus": [
            -7.232103701666379e-01,
            -7.948302026312400e-02,
            4.042871428174315e-02,
        ],
        "Earth": [-1.738192017257054e-01, 9.663245550235138e-01, 1.553901854897183e-04],
        "Mars": [-3.013262392582653e-01, -1.454029331393295e00, -2.300531433991428e-02],
        "Jupiter": [3.485202469657674e00, 3.552136904413157e00, -9.271035442798399e-02],
        "Saturn": [8.988104223143450e00, -3.719064854634689e00, -2.931937777323593e-01],
        "Uranus": [1.226302417897505e01, 1.529738792480545e01, -1.020549026883563e-01],
        "Neptune": [
            2.983501460984741e01,
            -1.793812957956852e00,
            -6.506401132254588e-01,
        ],
        "Moon": [-1.762788124769829e-01, 9.674377513177153e-01, 3.236901585768862e-04],
        "Pluto": [1.720200478843485e01, -3.034155683573043e01, -1.729127607100611e00],
        "Ceres": [-1.103880510367569e00, -2.533340440444230e00, 1.220283937721780e-01],
        "Vesta": [-8.092549658731499e-02, 2.558381434460076e00, -6.695836142398572e-02],
    }
    SOLAR_SYSTEM_VEL = {
        "Sun": [4.875094764261564e-06, -7.057133213976680e-06, -4.573453713094512e-08],
        "Mercury": [
            -2.232165900189702e-02,
            -2.157207103176252e-02,
            2.855193410495743e-04,
        ],
        "Venus": [
            2.034068201002341e-03,
            -2.020828626592994e-02,
            -3.945639843855159e-04,
        ],
        "Earth": [
            -1.723001232538228e-02,
            -2.967721342618870e-03,
            6.382125383116755e-07,
        ],
        "Mars": [1.424832259345280e-02, -1.579236181580905e-03, -3.823722796161561e-04],
        "Jupiter": [
            -5.470970658852281e-03,
            5.642487338479145e-03,
            9.896190602066252e-05,
        ],
        "Saturn": [
            1.822013845554067e-03,
            5.143470425888054e-03,
            -1.617235904887937e-04,
        ],
        "Uranus": [
            -3.097615358317413e-03,
            2.276781932345769e-03,
            4.860433222241686e-05,
        ],
        "Neptune": [
            1.676536611817232e-04,
            3.152098732861913e-03,
            -6.877501095688201e-05,
        ],
        "Moon": [
            -1.746667306153906e-02,
            -3.473438277358121e-03,
            -3.359028758606074e-05,
        ],
        "Pluto": [2.802810313667557e-03, 8.492056438614633e-04, -9.060790113327894e-04],
        "Ceres": [
            8.978653480111301e-03,
            -4.873256528198994e-03,
            -1.807162046049230e-03,
        ],
        "Vesta": [
            -1.017876585480054e-02,
            -5.452367109338154e-04,
            1.255870551153315e-03,
        ],
    }

    SOLAR_SYSTEM_COLORS = {
        "Sun": "orange",
        "Mercury": "slategrey",
        "Venus": "wheat",
        "Earth": "skyblue",
        "Mars": "red",
        "Jupiter": "darkgoldenrod",
        "Saturn": "gold",
        "Uranus": "paleturquoise",
        "Neptune": "blue",
    }

    SOLAR_SYSTEM_PLUS_COLORS = {
        "Sun": "orange",
        "Mercury": "slategrey",
        "Venus": "wheat",
        "Earth": "skyblue",
        "Mars": "red",
        "Jupiter": "darkgoldenrod",
        "Saturn": "gold",
        "Uranus": "paleturquoise",
        "Neptune": "blue",
        "Pluto": None,
        "Ceres": None,
        "Vesta": None,
    }

    if initial_condition == "pyth-3-body":
        # Pythagorean 3-body problem
        R1 = np.array([1.0, 3.0, 0.0])
        R2 = np.array([-2.0, -1.0, 0.0])
        R3 = np.array([1.0, -1.0, 0.0])
        V1 = np.array([0.0, 0.0, 0.0])
        V2 = np.array([0.0, 0.0, 0.0])
        V3 = np.array([0.0, 0.0, 0.0])

        x = np.array([R1, R2, R3])
        v = np.array([V1, V2, V3])
        m = np.array([3.0 / G, 4.0 / G, 5.0 / G])

        system = System(
            num_particles=len(m),
            x=x,
            v=v,
            m=m,
            G=G,
        )
        system.center_of_mass_correction()

        labels: List[Optional[str]] = [None, None, None]
        colors: List[Optional[str]] = [None, None, None]
        legend = False

        return system, labels, colors, legend

    elif initial_condition == "solar_system":
        m = np.array(
            [
                SOLAR_SYSTEM_MASSES["Sun"],
                SOLAR_SYSTEM_MASSES["Mercury"],
                SOLAR_SYSTEM_MASSES["Venus"],
                SOLAR_SYSTEM_MASSES["Earth"],
                SOLAR_SYSTEM_MASSES["Mars"],
                SOLAR_SYSTEM_MASSES["Jupiter"],
                SOLAR_SYSTEM_MASSES["Saturn"],
                SOLAR_SYSTEM_MASSES["Uranus"],
                SOLAR_SYSTEM_MASSES["Neptune"],
            ]
        )

        R1 = np.array(SOLAR_SYSTEM_POS["Sun"])
        R2 = np.array(SOLAR_SYSTEM_POS["Mercury"])
        R3 = np.array(SOLAR_SYSTEM_POS["Venus"])
        R4 = np.array(SOLAR_SYSTEM_POS["Earth"])
        R5 = np.array(SOLAR_SYSTEM_POS["Mars"])
        R6 = np.array(SOLAR_SYSTEM_POS["Jupiter"])
        R7 = np.array(SOLAR_SYSTEM_POS["Saturn"])
        R8 = np.array(SOLAR_SYSTEM_POS["Uranus"])
        R9 = np.array(SOLAR_SYSTEM_POS["Neptune"])

        V1 = np.array(SOLAR_SYSTEM_VEL["Sun"])
        V2 = np.array(SOLAR_SYSTEM_VEL["Mercury"])
        V3 = np.array(SOLAR_SYSTEM_VEL["Venus"])
        V4 = np.array(SOLAR_SYSTEM_VEL["Earth"])
        V5 = np.array(SOLAR_SYSTEM_VEL["Mars"])
        V6 = np.array(SOLAR_SYSTEM_VEL["Jupiter"])
        V7 = np.array(SOLAR_SYSTEM_VEL["Saturn"])
        V8 = np.array(SOLAR_SYSTEM_VEL["Uranus"])
        V9 = np.array(SOLAR_SYSTEM_VEL["Neptune"])

        x = np.array(
            [
                R1,
                R2,
                R3,
                R4,
                R5,
                R6,
                R7,
                R8,
                R9,
            ]
        )
        v = np.array(
            [
                V1,
                V2,
                V3,
                V4,
                V5,
                V6,
                V7,
                V8,
                V9,
            ]
        )

        system = System(
            num_particles=len(m),
            x=x,
            v=v,
            m=m,
            G=G,
        )
        system.center_of_mass_correction()

        labels = list(SOLAR_SYSTEM_COLORS.keys())
        colors = list(SOLAR_SYSTEM_COLORS.values())
        legend = True

        return system, labels, colors, legend

    elif initial_condition == "solar_system_plus":
        m = np.array(
            [
                SOLAR_SYSTEM_MASSES["Sun"],
                SOLAR_SYSTEM_MASSES["Mercury"],
                SOLAR_SYSTEM_MASSES["Venus"],
                SOLAR_SYSTEM_MASSES["Earth"],
                SOLAR_SYSTEM_MASSES["Mars"],
                SOLAR_SYSTEM_MASSES["Jupiter"],
                SOLAR_SYSTEM_MASSES["Saturn"],
                SOLAR_SYSTEM_MASSES["Uranus"],
                SOLAR_SYSTEM_MASSES["Neptune"],
                SOLAR_SYSTEM_MASSES["Pluto"],
                SOLAR_SYSTEM_MASSES["Ceres"],
                SOLAR_SYSTEM_MASSES["Vesta"],
            ]
        )

        R1 = np.array(SOLAR_SYSTEM_POS["Sun"])
        R2 = np.array(SOLAR_SYSTEM_POS["Mercury"])
        R3 = np.array(SOLAR_SYSTEM_POS["Venus"])
        R4 = np.array(SOLAR_SYSTEM_POS["Earth"])
        R5 = np.array(SOLAR_SYSTEM_POS["Mars"])
        R6 = np.array(SOLAR_SYSTEM_POS["Jupiter"])
        R7 = np.array(SOLAR_SYSTEM_POS["Saturn"])
        R8 = np.array(SOLAR_SYSTEM_POS["Uranus"])
        R9 = np.array(SOLAR_SYSTEM_POS["Neptune"])
        R10 = np.array(SOLAR_SYSTEM_POS["Pluto"])
        R11 = np.array(SOLAR_SYSTEM_POS["Ceres"])
        R12 = np.array(SOLAR_SYSTEM_POS["Vesta"])

        V1 = np.array(SOLAR_SYSTEM_VEL["Sun"])
        V2 = np.array(SOLAR_SYSTEM_VEL["Mercury"])
        V3 = np.array(SOLAR_SYSTEM_VEL["Venus"])
        V4 = np.array(SOLAR_SYSTEM_VEL["Earth"])
        V5 = np.array(SOLAR_SYSTEM_VEL["Mars"])
        V6 = np.array(SOLAR_SYSTEM_VEL["Jupiter"])
        V7 = np.array(SOLAR_SYSTEM_VEL["Saturn"])
        V8 = np.array(SOLAR_SYSTEM_VEL["Uranus"])
        V9 = np.array(SOLAR_SYSTEM_VEL["Neptune"])
        V10 = np.array(SOLAR_SYSTEM_VEL["Pluto"])
        V11 = np.array(SOLAR_SYSTEM_VEL["Ceres"])
        V12 = np.array(SOLAR_SYSTEM_VEL["Vesta"])

        x = np.array(
            [
                R1,
                R2,
                R3,
                R4,
                R5,
                R6,
                R7,
                R8,
                R9,
                R10,
                R11,
                R12,
            ]
        )
        v = np.array(
            [
                V1,
                V2,
                V3,
                V4,
                V5,
                V6,
                V7,
                V8,
                V9,
                V10,
                V11,
                V12,
            ]
        )

        system = System(
            num_particles=len(m),
            x=x,
            v=v,
            m=m,
            G=G,
        )
        system.center_of_mass_correction()

        labels = list(SOLAR_SYSTEM_PLUS_COLORS.keys())
        colors = list(SOLAR_SYSTEM_PLUS_COLORS.values())
        legend = True

        return system, labels, colors, legend

    else:
        raise ValueError(f"Initial condition not recognized: {initial_condition}.")


def plot_initial_conditions(
    system: System,
    labels: list,
    colors: list,
    legend: bool,
) -> None:
    """
    Plot the initial positions.

    Parameters
    ----------
    system : System
        System object.
    labels : list
        Labels for the particles.
    colors : list
        Colors for the particles.
    legend : bool
        Whether to show the legend.
    """
    fig, ax = plt.subplots()
    ax.set_xlabel("$x$ (AU)")
    ax.set_ylabel("$y$ (AU)")

    for i in range(system.num_particles):
        ax.scatter(
            system.x[i, 0], system.x[i, 1], marker="o", color=colors[i], label=labels[i]
        )

    if legend:
        ax.legend()

    plt.show()


##### Step 2 #####
def acceleration(
    a: np.ndarray,
    system: System,
) -> None:
    """
    Compute the gravitational acceleration

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array to be modified in-place,
        with shape (N, 3)
    system : System
        System object.
    """
    # Empty acceleration array
    a.fill(0.0)

    # Declare variables
    x = system.x
    m = system.m
    G = system.G

    # Compute the displacement vector
    r_ij = x[:, np.newaxis, :] - x[np.newaxis, :, :]

    # Compute the distance
    r_norm = np.linalg.norm(r_ij, axis=2)

    # Compute 1 / r^3
    with np.errstate(divide="ignore", invalid="ignore"):
        inv_r_cubed = 1.0 / (r_norm * r_norm * r_norm)

    # Set diagonal elements to 0 to avoid self-interaction
    np.fill_diagonal(inv_r_cubed, 0.0)

    # Compute the acceleration
    a[:] = G * np.einsum("ijk,ij,i->jk", r_ij, inv_r_cubed, m)


##### Step 3 #####
def euler(a: np.ndarray, system: System, dt: float) -> None:
    """
    Advance one step with the Euler's method.

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array with shape (N, 3).
    system : System
        System object.
    dt : float
        Time step.
    """
    acceleration(a, system)
    system.x += system.v * dt
    system.v += a * dt


def print_simulation_info_fixed_step_size(
    system: System,
    tf: float,
    dt: float,
    num_steps: int,
    output_interval: float,
    sol_size: int,
) -> None:
    print("----------------------------------------------------------")
    print("Simulation Info:")
    print(f"num_particles: {system.num_particles}")
    print(f"G: {system.G}")
    print(f"tf: {tf} days (Actual tf = dt * num_steps = {dt * num_steps} days)")
    print(f"dt: {dt} days")
    print(f"Num_steps: {num_steps}")
    print()
    print(f"Output interval: {output_interval} days")
    print(f"Estimated solution size: {sol_size}")
    print("----------------------------------------------------------")


def plot_trajectory(
    sol_x: np.ndarray,
    labels: list,
    colors: list,
    legend: bool,
) -> None:
    """
    Plot the 2D trajectory.

    Parameters
    ----------
    sol_x : np.ndarray
        Solution position array with shape (N_steps, num_particles, 3).
    labels : list
        List of labels for the particles.
    colors : list
        List of colors for the particles.
    legend : bool
        Whether to show the legend.
    """
    fig = plt.figure()
    ax = fig.add_subplot(111, aspect="equal")
    ax.set_xlabel("$x$ (AU)")
    ax.set_ylabel("$y$ (AU)")

    for i in range(sol_x.shape[1]):
        traj = ax.plot(
            sol_x[:, i, 0],
            sol_x[:, i, 1],
            color=colors[i],
        )
        # Plot the last position with marker
        ax.scatter(
            sol_x[-1, i, 0],
            sol_x[-1, i, 1],
            marker="o",
            color=traj[0].get_color(),
            label=labels[i],
        )

    if legend:
        fig.legend(loc="center right", borderaxespad=0.2)
        fig.tight_layout()

    plt.show()


##### Step 4 #####
def compute_rel_energy_error(
    sol_x: np.ndarray, sol_v: np.ndarray, system: System
) -> np.ndarray:
    """
    Compute the relative energy error of the simulation.

    Parameters
    ----------
    sol_x : np.ndarray
        Solution position array with shape (N_steps, num_particles, 3).
    sol_v : np.ndarray
        Solution velocity array with shape (N_steps, num_particles, 3).
    system : System
        System object.

    Returns
    -------
    energy_error : np.ndarray
        Relative energy error of the simulation, with shape (N_steps,).
    """
    # Allocate memory and initialize arrays
    n_steps = sol_x.shape[0]
    num_particles = system.num_particles
    m = system.m
    G = system.G
    rel_energy_error = np.zeros(n_steps)

    # Compute the total energy (KE + PE)
    for count in range(n_steps):
        x = sol_x[count]
        v = sol_v[count]
        for i in range(num_particles):
            # KE
            rel_energy_error[count] += 0.5 * m[i] * np.linalg.norm(v[i]) ** 2
            # PE
            for j in range(i + 1, num_particles):
                rel_energy_error[count] -= G * m[i] * m[j] / np.linalg.norm(x[i] - x[j])

    # Compute the relative energy error
    initial_energy = rel_energy_error[0]
    rel_energy_error = (rel_energy_error - initial_energy) / initial_energy
    rel_energy_error = np.abs(rel_energy_error)

    return rel_energy_error


def plot_rel_energy_error(rel_energy_error: np.ndarray, sol_t: np.ndarray) -> None:
    """
    Plot the relative energy error.

    Parameters
    ----------
    rel_energy_error : np.ndarray
        Relative energy error of the simulation, with shape (N_steps,).
    sol_t : np.ndarray
        Solution time array with shape (N_steps,).
    """
    plt.figure()
    plt.plot(sol_t, rel_energy_error)
    plt.yscale("log")
    plt.xlabel("Time step")
    plt.ylabel("Relative Energy Error")
    plt.title("Relative Energy Error vs Time Step")
    plt.show()


def euler_cromer(a: np.ndarray, system: System, dt: float) -> None:
    """
    Advance one step with the Euler-Cromer method.

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array with shape (N, 3).
    system : System
        System object.
    dt : float
        Time step.
    """
    acceleration(a, system)
    system.v += a * dt
    system.x += system.v * dt


def rk4(a: np.ndarray, system: System, dt: float) -> None:
    """
    Advance one step with the RK4 method.

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array with shape (N, 3).
    system : System
        System object.
    dt : float
        Time step.
    """
    num_stages = 4
    coeff = np.array([0.5, 0.5, 1.0])
    weights = np.array([1.0, 2.0, 2.0, 1.0]) / 6.0

    # Allocate memory and initialize arrays
    x0 = system.x.copy()
    v0 = system.v.copy()
    xk = np.zeros((num_stages, system.num_particles, 3))
    vk = np.zeros((num_stages, system.num_particles, 3))

    # Initial stage
    acceleration(a, system)
    xk[0] = v0
    vk[0] = a

    # Compute the stages
    for stage in range(1, num_stages):
        # Compute acceleration
        system.x = x0 + dt * coeff[stage - 1] * xk[stage - 1]
        acceleration(a, system)

        # Compute xk and vk
        xk[stage] = v0 + dt * coeff[stage - 1] * vk[stage - 1]
        vk[stage] = a

    # Advance step
    # dx = 0.0
    # dv = 0.0
    # for stage in range(num_stages):
    #     dx += weights[stage] * xk[stage]
    #     dv += weights[stage] * vk[stage]

    dx = np.einsum("i,ijk->jk", weights, xk)
    dv = np.einsum("i,ijk->jk", weights, vk)

    system.x = x0 + dt * dx
    system.v = v0 + dt * dv


def leapfrog(a: np.ndarray, system: System, dt: float) -> None:
    """
    Advance one step with the LeapFrog method.

    Parameters
    ----------
    a : np.ndarray
        Gravitational accelerations array with shape (N, 3).
    system : System
        System object.
    dt : float
        Time step.
    """
    # Velocity kick (v_1/2)
    acceleration(a, system)
    system.v += a * 0.5 * dt

    # Position drift (x_1)
    system.x += system.v * dt

    # Velocity kick (v_1)
    acceleration(a, system)
    system.v += a * 0.5 * dt


##### Step 5 #####
def print_simulation_info_adaptive_step_size(
    system: System,
    tf: float,
    tolerance: float,
    initial_dt: float,
    output_interval: float,
    sol_size: int,
) -> None:
    print("----------------------------------------------------------")
    print("Simulation Info:")
    print(f"num_particles: {system.num_particles}")
    print(f"G: {system.G}")
    print(f"tf: {tf} days")
    print(f"tolerance: {tolerance}")
    print(f"Initial dt: {initial_dt} days")
    print()
    print(f"Output interval: {output_interval} days")
    print(f"Estimated solution size: {sol_size}")
    print("----------------------------------------------------------")


def plot_dt(sol_dt: np.ndarray, sol_t: np.ndarray) -> None:
    """
    Plot the time step.

    Parameters
    ----------
    sol_dt : np.ndarray
        Time step array with shape (N_steps,).
    sol_t : np.ndarray
        Solution time array with shape (N_steps,).
    """
    plt.figure()
    plt.semilogy(sol_t, sol_dt)
    plt.xlabel("Time")
    plt.ylabel("dt")
    plt.show()


##### Extra #####
def set_3d_axes_equal(ax: plt.Axes) -> None:
    """
    Make axes of 3D plot have equal scale

    Parameters
    ----------
    ax : matplotlib axis
        The axis to set equal scale

    Reference
    ---------
    karlo, https://stackoverflow.com/questions/13685386/how-to-set-the-equal-aspect-ratio-for-all-axes-x-y-z
    """

    x_limits = ax.get_xlim3d()  # type: ignore
    y_limits = ax.get_ylim3d()  # type: ignore
    z_limits = ax.get_zlim3d()  # type: ignore

    x_range = abs(x_limits[1] - x_limits[0])
    x_middle = np.mean(x_limits)
    y_range = abs(y_limits[1] - y_limits[0])
    y_middle = np.mean(y_limits)
    z_range = abs(z_limits[1] - z_limits[0])
    z_middle = np.mean(z_limits)

    # The plot bounding box is a sphere in the sense of the infinity
    # norm, hence I call half the max range the plot radius.
    plot_radius = 0.5 * max([x_range, y_range, z_range])

    ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])  # type: ignore
    ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])  # type: ignore
    ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])  # type: ignore


def plot_3d_trajectory(
    sol_x: np.ndarray,
    labels: list,
    colors: list,
    legend: bool,
) -> None:
    """
    Plot the 3D trajectory.

    Parameters
    ----------
    sol_x : np.ndarray
        Solution position array with shape (N_steps, num_particles, 3).
    labels : list
        List of labels for the particles.
    colors : list
        List of colors for the particles.
    legend : bool
        Whether to show the legend.
    """

    fig = plt.figure()
    ax = fig.add_subplot(111, projection="3d")
    ax.set_xlabel("$x$ (AU)")
    ax.set_ylabel("$y$ (AU)")
    ax.set_zlabel("$z$ (AU)")  # type: ignore

    for i in range(sol_x.shape[1]):
        traj = ax.plot(
            sol_x[:, i, 0],
            sol_x[:, i, 1],
            sol_x[:, i, 2],
            color=colors[i],
        )
        # Plot the last position with marker
        ax.scatter(
            sol_x[-1, i, 0],
            sol_x[-1, i, 1],
            sol_x[-1, i, 2],
            marker="o",
            color=traj[0].get_color(),
            label=labels[i],
        )

    set_3d_axes_equal(ax)

    if legend:
        ax.legend(loc="center right", bbox_to_anchor=(1.325, 0.5))
        fig.subplots_adjust(right=0.7)

    plt.show()

Comments