Skip to content

Barnes-Hut algorithm

The classic Barnes-Hut algorithm1 provides a way to approximate forces in \(\mathcal{O}(N \log N)\) without losing accuracy at close range. Because gravity decays at a quadratic rate, the accuracy of long range interactions are less important. Therefore, it is reasonable to approximate a far cluster of particles as a single particle with mass \(m = m_{\textnormal{cluster}} \) and coordinate \(x = x_{\textnormal{com, cluster} } \). One simple choice of criterion is the opening angle \(\theta = l / d\), where \(l\) is the length of the cubical cell enclosing the cluster and \(d\) is the distance between the target particle and the center of mass of the cluster (see figure 1). This is purely geometric and does not depends on the mass or number of particles in the cluster.

Barnes-Hut algorithm
Figure 1: Illustration of Barnes-Hut algorithm.

Linear octree construction

Source code (Click to expand)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/**
 * \file linear_octree.c
 * \brief Implementation of linear octree for Barnes-Hut algorithm
 * 
 * \author Ching-Yin Ng
 */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef USE_OPENMP
    #include <omp.h>
#endif

#include "acceleration.h"
#include "common.h"
#include "error.h"
#include "linear_octree.h"


// // For debug only
// IN_FILE void print_octree_nodes(
//     const LinearOctree *restrict octree,
//     const double *restrict x,
//     const double *restrict m,
//     const int node_idx,
//     const int indent
// )
// {
//     // Print indent spaces
//     for (int i = 0; i < indent; ++i)
//     printf("  ");

//     // Print summary info about the node
//     printf("Node %d:\n", node_idx);

//     for (int i = 0; i < indent; ++i) printf("  ");
//     printf("  Num Particles: %d, Num children: %d\n",
//         octree->tree_num_particles[node_idx],
//         octree->tree_num_internal_children[node_idx]
//     );

//     if (octree->tree_num_internal_children[node_idx] > 0)
//     {
//         for (int i = 0; i < indent; ++i) printf("  ");
//         printf("  Center of Mass: (%.16g, %.16g, %.16g), Total Mass: %.16g\n",
//             octree->tree_center_of_mass_x[node_idx],
//             octree->tree_center_of_mass_y[node_idx],
//             octree->tree_center_of_mass_z[node_idx],
//             octree->tree_mass[node_idx]
//         );
//     }
//     else
//     {
//         for (int i = 0; i < octree->tree_num_particles[node_idx]; i++)
//         {
//             int particle_idx = octree->sorted_indices[octree->tree_first_particle_sorted_idx[node_idx] + i];
//             for (int j = 0; j < indent; ++j) printf("  ");
//             printf("  Particle %d: (%.4g, %.4g, %.4g), m = %.4g\n",
//                 particle_idx,
//                 x[particle_idx * 3 + 0],
//                 x[particle_idx * 3 + 1],
//                 x[particle_idx * 3 + 2],
//                 m[particle_idx]
//             );
//         }
//     }

//     // Recurse on internal children (if any)
//     int num_children = octree->tree_num_internal_children[node_idx];
//     if (num_children > 0) 
//     {
//         int first_child = octree->tree_first_internal_children_idx[node_idx];
//         for (int i = 0; i < num_children; ++i)
//         {
//             int child_idx = first_child + i;
//             print_octree_nodes(
//                 octree,
//                 x,
//                 m,
//                 child_idx,
//                 indent + 1
//             );
//         }
//     }
// }

LinearOctree get_new_linear_octree(void)
{
    LinearOctree linear_octree;
    linear_octree.particle_morton_indices_deepest_level = NULL;
    linear_octree.sorted_indices = NULL;
    linear_octree.tree_num_particles = NULL;
    linear_octree.tree_num_internal_children = NULL;
    linear_octree.tree_first_internal_children_idx = NULL;
    linear_octree.tree_mass = NULL;
    linear_octree.tree_center_of_mass_x = NULL;
    linear_octree.tree_center_of_mass_y = NULL;
    linear_octree.tree_center_of_mass_z = NULL;
    return linear_octree;
}

/**
 * \brief Calculate the bounding box of the system
 * 
 * \param[out] center 3D vector of the center of the bounding box
 * \param[out] width Width of the bounding box
 * \param[in] num_particles Number of particles
 * \param[in] x Array of position vectors
 */
IN_FILE void calculate_bounding_box(
    double *restrict center,
    double *restrict width,
    const int num_particles,
    const double *restrict x
)
{
    /* Find the width of the bounding box */
    double min_x = x[0];
    double max_x = x[0];
    double min_y = x[1];
    double max_y = x[1];
    double min_z = x[2];
    double max_z = x[2];

    for (int i = 1; i < num_particles; i++)
    {
        min_x = fmin(min_x, x[i * 3 + 0]);
        max_x = fmax(max_x, x[i * 3 + 0]);
        min_y = fmin(min_y, x[i * 3 + 1]);
        max_y = fmax(max_y, x[i * 3 + 1]);
        min_z = fmin(min_z, x[i * 3 + 2]);
        max_z = fmax(max_z, x[i * 3 + 2]);
    }

    center[0] = (max_x + min_x) / 2.0;
    center[1] = (max_y + min_y) / 2.0;
    center[2] = (max_z + min_z) / 2.0;

    const double width_x = max_x - min_x;
    const double width_y = max_y - min_y;
    const double width_z = max_z - min_z;
    *width = fmax(fmax(width_x, width_y), width_z);
}

/**
 * \brief Compute the 3D Morton indices at level 21 using magic number
 * 
 * \param[out] morton_indices Array of Morton indices
 * \param[in] object_count Number of particles
 * \param[in] x Array of position vectors
 * \param[in] center 3D vector of the center of the bounding box
 * \param[in] width Width of the bounding box
 * 
 * \ref https://stackoverflow.com/a/18528775, Stack Overflow
 */
IN_FILE void compute_3d_particle_morton_indices_deepest_level(
    int64 *restrict morton_indices,
    const int object_count,
    const double *restrict x,
    const double *restrict center,
    const double width
)
{
    for (int i = 0; i < object_count; i++)
    {
        /* Normalize the position */
        const double x_i = (x[i * 3 + 0] - center[0]) / width + 0.5;
        const double y_i = (x[i * 3 + 1] - center[1]) / width + 0.5;
        const double z_i = (x[i * 3 + 2] - center[2]) / width + 0.5;

        /* Compute the morton indices */
        int64 n_x = x_i * (1 << 21);
        int64 n_y = y_i * (1 << 21);
        int64 n_z = z_i * (1 << 21);

        n_x &= 0x1fffff;
        n_x = (n_x | n_x << 32) & 0x1f00000000ffff;
        n_x = (n_x | n_x << 16) & 0x1f0000ff0000ff;
        n_x = (n_x | n_x << 8)  & 0x100f00f00f00f00f;
        n_x = (n_x | n_x << 4)  & 0x10c30c30c30c30c3;
        n_x = (n_x | n_x << 2)  & 0x1249249249249249;

        n_y &= 0x1fffff;
        n_y = (n_y | n_y << 32) & 0x1f00000000ffff;
        n_y = (n_y | n_y << 16) & 0x1f0000ff0000ff;
        n_y = (n_y | n_y << 8)  & 0x100f00f00f00f00f;
        n_y = (n_y | n_y << 4)  & 0x10c30c30c30c30c3;
        n_y = (n_y | n_y << 2)  & 0x1249249249249249;

        n_z &= 0x1fffff;
        n_z = (n_z | n_z << 32) & 0x1f00000000ffff;
        n_z = (n_z | n_z << 16) & 0x1f0000ff0000ff;
        n_z = (n_z | n_z << 8)  & 0x100f00f00f00f00f;
        n_z = (n_z | n_z << 4)  & 0x10c30c30c30c30c3;
        n_z = (n_z | n_z << 2)  & 0x1249249249249249;

        morton_indices[i] = n_x | (n_y << 1) | (n_z << 2);
    }
}

/**
 * \brief Perform radix sort on the particles based on their Morton indices
 * 
 * \param morton_indices Array of Morton indices
 * \param indices Array of indices
 * \param object_count Number of particles
 * \param level Level of the Morton indices
 * 
 * \return ErrorStatus
 * 
 * \exception GRAV_MEMORY_ERROR if memory allocation for temporary arrays failed
 */
IN_FILE ErrorStatus radix_sort_particles_morton_index(
    int64 *restrict morton_indices,
    int *restrict indices,
    const int object_count,
    const int level
)
{
    /* Calculate constnats */
    const int RADIX_BITS = 9;
    const int RADIX_SIZE = 1 << RADIX_BITS;
    const int RADIX_MASK = RADIX_SIZE - 1;

    const int num_significant_bits = 3 * level;
    const int num_passes = (num_significant_bits + RADIX_BITS - 1) / RADIX_BITS;

    /* Allocate memory */
    int64 *restrict temp_morton_indices = malloc(object_count * sizeof(int64));
    int *restrict temp_indices = malloc(object_count * sizeof(int));
    int *restrict count = malloc(RADIX_SIZE * sizeof(int));
    if (!temp_morton_indices || !temp_indices || !count)
    {
        free(count);
        free(temp_morton_indices);
        free(temp_indices);

        return WRAP_RAISE_ERROR(
            GRAV_MEMORY_ERROR,
            "Failed to allocate memory for temporary arrays"
        );
    }

    /* Perform LSB radix sort */

    // Flag to indicate whether the sorted array is in temp arrays
    // This can reduce the number of memcpy to O(1) instead of O(num_passes)
    bool is_temp = false; 

    for (int i = 0; i < num_passes; i++) 
    {
        // Empty count array
        for (int j = 0; j < RADIX_SIZE; j++)
        {
            count[j] = 0;
        }

        // Calculate shift for this pass (start from least significant bits)
        const int shift = i * RADIX_BITS;

        // Count occurrences of each radix value
        if (is_temp)
        {
            for (int j = 0; j < object_count; j++) 
            {
                count[(temp_morton_indices[j] >> shift) & RADIX_MASK]++;
            }
        }
        else
        {
            for (int j = 0; j < object_count; j++) 
            {
                count[(morton_indices[j] >> shift) & RADIX_MASK]++;
            }
        }

        // Get cumulative count
        int total = 0;
        for (int j = 0; j < RADIX_SIZE; j++) 
        {
            int old_count = count[j];
            count[j] = total;
            total += old_count;
        }

        // Sort elements into temporary arrays
        if (is_temp)
        {
            for (int j = 0; j < object_count; j++) 
            {
                const int dest = count[(temp_morton_indices[j] >> shift) & RADIX_MASK]++;

                morton_indices[dest] = temp_morton_indices[j];
                indices[dest] = temp_indices[j];
            }
        }
        else
        {
            for (int j = 0; j < object_count; j++) 
            {
                const int dest = count[(morton_indices[j] >> shift) & RADIX_MASK]++;

                temp_morton_indices[dest] = morton_indices[j];
                temp_indices[dest] = indices[j];
            }
        }

        is_temp = !is_temp;
    }

    // Copy the sorted array to the original array
    if (is_temp)
    {
        memcpy(morton_indices, temp_morton_indices, object_count * sizeof(int64));
        memcpy(indices, temp_indices, object_count * sizeof(int));
    }

    free(count);
    free(temp_morton_indices);
    free(temp_indices);

    return make_success_error_status();
}

/**
 * \brief Perform binary search to find the number of particles in each octant
 * 
 * \param[out] num_particles_per_octant Array to store the number of particles in each octant
 * \param[in] particle_morton_indices_deepest_level Array of Morton indices at the deepest level
 * \param[in] node_morton_index_level Morton index of the node
 * \param[in] start_idx Start index of the particles in the node
 * \param[in] end_idx End index of the particles in the node
 * \param[in] leaf_level Level of the leaf nodes
 * 
 * \return ErrorStatus
 * 
 * \exception GRAV_VALUE_ERROR if the Morton index is out of range
 */
IN_FILE ErrorStatus binary_search_num_particles_per_octant(
    int *restrict num_particles_per_octant,
    const int64 *restrict particle_morton_indices_deepest_level,
    const int64 node_morton_index_level,
    const int start_idx,
    const int end_idx,
    const int leaf_level
)
{
    const int64 prefix = node_morton_index_level * 8;
    const int level_shift = 3 * (MORTON_MAX_LEVEL - leaf_level);

    int cumulative_count = 0;

    for (int i = 0; i < 8; i++)
    {
        // Binary search for the index of last i
        int left = start_idx + cumulative_count;
        int right = end_idx;
        while (left <= right)
        {
            const int mid = left + (right - left) / 2;
            const int mid_octant = ((particle_morton_indices_deepest_level[mid] >> level_shift) - prefix);

            if (mid_octant > 7 || mid_octant < 0)
            {
                return raise_error_fmt(
                    __FILE__,
                    __LINE__,
                    __func__,
                    GRAV_VALUE_ERROR,
                    "Morton index %d is out of range [0, 7]",
                    mid_octant
                );
            }

            if (mid_octant == i && (mid == end_idx || (((particle_morton_indices_deepest_level[mid + 1] >> level_shift) - prefix)) > i))
            {
                num_particles_per_octant[i] = mid - (start_idx + cumulative_count) + 1;
                cumulative_count += num_particles_per_octant[i];
                break;
            }
            else if (mid_octant <= i)
            {
                left = mid + 1;
            }
            else
            {
                right = mid - 1;
            }
        }
    }

    return make_success_error_status();
}

/**
 * \brief Set up a new internal node
 * 
 * \param[out] octree Pointer to the linear octree
 * \param[out] allocated_internal_nodes_ptr Pointer to the number of allocated internal nodes
 * \param[in] level Node level
 * \param[in] node Node index
 * \param[in] node_morton_index_level Morton index of the node at the current level
 * 
 * \return ErrorStatus
 */
IN_FILE ErrorStatus setup_node(
    LinearOctree *restrict octree,
    int *restrict allocated_internal_nodes_ptr,
    const int level,
    const int node,
    const int64 node_morton_index_level
)
{
    ErrorStatus error_status;

    /* Declare variables */
    int *restrict num_internal_nodes_ptr = &octree->num_internal_nodes;
    int *restrict tree_num_particles = octree->tree_num_particles;
    int *restrict tree_num_internal_children = octree->tree_num_internal_children;
    int *restrict tree_first_particle_sorted_idx = octree->tree_first_particle_sorted_idx;
    int *restrict tree_first_internal_children_idx = octree->tree_first_internal_children_idx;

    double *restrict tree_mass = octree->tree_mass;
    double *restrict tree_center_of_mass_x = octree->tree_center_of_mass_x;
    double *restrict tree_center_of_mass_y = octree->tree_center_of_mass_y;
    double *restrict tree_center_of_mass_z = octree->tree_center_of_mass_z;

    int num_particles_per_octant[8] = {0};

    /* Find the number of particles in each octant */
    const int start_idx = tree_first_particle_sorted_idx[node];
    const int end_idx = start_idx + tree_num_particles[node] - 1;
    const int child_level = level + 1;
    error_status = WRAP_TRACEBACK(binary_search_num_particles_per_octant(
        num_particles_per_octant,
        octree->particle_morton_indices_deepest_level,
        node_morton_index_level,
        start_idx,
        end_idx,
        child_level
    ));
    if (error_status.return_code != GRAV_SUCCESS)
    {
        return error_status;
    }

    /* Set up child nodes */
    bool first_child_found = false;
    int cumulative_count = 0;
    for (int i = 0; i < 8; i++)
    {
        if (num_particles_per_octant[i] <= 0)
        {
            continue;
        }

        const int child = *num_internal_nodes_ptr;

        // Reallocate memory if necessary
        if (child >= *allocated_internal_nodes_ptr)
        {
            *allocated_internal_nodes_ptr *= 2;
            int *tmp_tree_num_particles = realloc(tree_num_particles, *allocated_internal_nodes_ptr * sizeof(int));
            if (!tmp_tree_num_particles)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_num_particles"
                );
            }
            tree_num_particles = tmp_tree_num_particles;
            octree->tree_num_particles = tree_num_particles;

            int *tmp_tree_num_internal_children = realloc(tree_num_internal_children, *allocated_internal_nodes_ptr * sizeof(int));
            if (!tmp_tree_num_internal_children)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_num_internal_children"
                );
            }
            tree_num_internal_children = tmp_tree_num_internal_children;
            octree->tree_num_internal_children = tree_num_internal_children;

            int *tmp_tree_first_particle_sorted_idx = realloc(tree_first_particle_sorted_idx, *allocated_internal_nodes_ptr * sizeof(int));
            if (!tmp_tree_first_particle_sorted_idx)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_first_particle_sorted_idx"
                );
            }
            tree_first_particle_sorted_idx = tmp_tree_first_particle_sorted_idx;
            octree->tree_first_particle_sorted_idx = tree_first_particle_sorted_idx;

            int *tmp_tree_first_internal_children_idx = realloc(tree_first_internal_children_idx, *allocated_internal_nodes_ptr * sizeof(int));
            if (!tmp_tree_first_internal_children_idx)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_first_internal_children_idx"
                );
            }
            tree_first_internal_children_idx = tmp_tree_first_internal_children_idx;
            octree->tree_first_internal_children_idx = tree_first_internal_children_idx;

            double *tmp_tree_mass = realloc(octree->tree_mass, *allocated_internal_nodes_ptr * sizeof(double));
            if (!tmp_tree_mass)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_mass"
                );
            }
            tree_mass = tmp_tree_mass;
            octree->tree_mass = tmp_tree_mass;

            double *tmp_tree_center_of_mass_x = realloc(octree->tree_center_of_mass_x, *allocated_internal_nodes_ptr * sizeof(double));
            if (!tmp_tree_center_of_mass_x)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_center_of_mass_x"
                );
            }
            octree->tree_center_of_mass_x = tmp_tree_center_of_mass_x;
            tree_center_of_mass_x = tmp_tree_center_of_mass_x;

            double *tmp_tree_center_of_mass_y = realloc(octree->tree_center_of_mass_y, *allocated_internal_nodes_ptr * sizeof(double));
            if (!tmp_tree_center_of_mass_y)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_center_of_mass_y"
                );
            }
            octree->tree_center_of_mass_y = tmp_tree_center_of_mass_y;
            tree_center_of_mass_y = tmp_tree_center_of_mass_y;

            double *tmp_tree_center_of_mass_z = realloc(octree->tree_center_of_mass_z, *allocated_internal_nodes_ptr * sizeof(double));
            if (!tmp_tree_center_of_mass_z)
            {
                return WRAP_RAISE_ERROR(
                    GRAV_MEMORY_ERROR,
                    "Failed to reallocate memory for tree_center_of_mass_z"
                );
            }
            octree->tree_center_of_mass_z = tmp_tree_center_of_mass_z;
            tree_center_of_mass_z = tmp_tree_center_of_mass_z;
        }

        if (!first_child_found)
        {
            first_child_found = true;
            tree_first_internal_children_idx[node] = child;
            tree_num_internal_children[node] = 0;
        }

        // Create a new internal node
        (*num_internal_nodes_ptr)++;
        (tree_num_internal_children[node])++;

        tree_num_internal_children[child] = 0;
        tree_num_particles[child] = num_particles_per_octant[i];
        tree_first_particle_sorted_idx[child] = start_idx + cumulative_count;

        tree_mass[child] = 0.0;
        tree_center_of_mass_x[child] = 0.0;
        tree_center_of_mass_y[child] = 0.0;
        tree_center_of_mass_z[child] = 0.0;

        cumulative_count += num_particles_per_octant[i];
    }

    return make_success_error_status();
}

/**
 * \brief Helper function to construct the octree
 * 
 * \param[out] octree Pointer to the linear octree
 * \param[in] allocated_internal_nodes Number of allocated internal nodes
 * \param[in] max_num_particles_per_leaf Maximum number of particles per leaf
 * \param[in] num_particles Number of particles
 * \param[in] x Array of position vectors
 * \param[in] m Array of masses
 * 
 * \return ErrorStatus
 */
IN_FILE ErrorStatus helper_construct_octree(
    LinearOctree *restrict octree,
    int allocated_internal_nodes,
    const int max_num_particles_per_leaf,
    const int num_particles,
    const double *restrict x,
    const double *restrict m
)
{
    typedef struct Stack
    {
        int node;
        int processed_children;
        double total_mass;
        double mass_times_distance[3];
        struct Stack *parent;
    } Stack;

    ErrorStatus error_status;

    /* Create a stack */
    Stack stack[MORTON_MAX_LEVEL + 1];
    Stack *restrict current_stack = &(stack[0]);

    current_stack->node = 0;
    current_stack->processed_children = -1;
    current_stack->total_mass = 0.0;
    current_stack->mass_times_distance[0] = 0.0;
    current_stack->mass_times_distance[1] = 0.0;
    current_stack->mass_times_distance[2] = 0.0;
    current_stack->parent = NULL;

    /* Declare variables */
    int *restrict num_internal_nodes_ptr = &(octree->num_internal_nodes);
    const int64 *restrict particle_morton_indices_deepest_level = octree->particle_morton_indices_deepest_level;
    const int *restrict sorted_indices = octree->sorted_indices;

    /* Set up the root node */
    int level = 0;
    *num_internal_nodes_ptr = 1;

    octree->tree_num_particles[0] = num_particles;
    octree->tree_num_internal_children[0] = 0;
    octree->tree_first_particle_sorted_idx[0] = 0;
    octree->tree_mass[0] = 0.0;
    octree->tree_center_of_mass_x[0] = 0.0;
    octree->tree_center_of_mass_y[0] = 0.0;
    octree->tree_center_of_mass_z[0] = 0.0;

    error_status = WRAP_TRACEBACK(setup_node(
        octree,
        &allocated_internal_nodes,
        level,
        current_stack->node,
        0
    ));
    if (error_status.return_code != GRAV_SUCCESS)
    {
        return error_status;
    }
    level++;

    while (true)
    {
        const int current_node = current_stack->node;
        for (int i = current_stack->processed_children + 1; i < octree->tree_num_internal_children[current_node]; i++)
        {
            const int child = octree->tree_first_internal_children_idx[current_node] + i;
            const int start_idx = octree->tree_first_particle_sorted_idx[child];
            const int num_particles = octree->tree_num_particles[child];

            /* Leaf node */
            if (num_particles <= max_num_particles_per_leaf || level >= MORTON_MAX_LEVEL)
            {
                octree->tree_num_internal_children[child] = 0;

                // Update the stack
                for (int j = 0; j < num_particles; j++)
                {
                    const int particle_idx = sorted_indices[start_idx + j];
                    current_stack->total_mass += m[particle_idx];
                    current_stack->mass_times_distance[0] += m[particle_idx] * x[particle_idx * 3 + 0];
                    current_stack->mass_times_distance[1] += m[particle_idx] * x[particle_idx * 3 + 1];
                    current_stack->mass_times_distance[2] += m[particle_idx] * x[particle_idx * 3 + 2];
                }
                current_stack->processed_children = i;

                continue;
            }

            /* Internal node */
            else
            {
                const int64 child_morton_index_level = (particle_morton_indices_deepest_level[start_idx] >> (3 * (MORTON_MAX_LEVEL - level)));
                error_status = WRAP_TRACEBACK(setup_node(
                    octree,
                    &allocated_internal_nodes,
                    level,
                    child,
                    child_morton_index_level
                ));
                if (error_status.return_code != GRAV_SUCCESS)
                {
                    return error_status;
                }

                Stack *restrict new_item = &(stack[level + 1]);
                new_item->node = child;
                new_item->processed_children = -1;
                new_item->total_mass = 0.0;
                new_item->mass_times_distance[0] = 0.0;
                new_item->mass_times_distance[1] = 0.0;
                new_item->mass_times_distance[2] = 0.0;
                new_item->parent = current_stack;

                current_stack = new_item;
                level++;

                break;
            }
        }

        /* Processed all children */
        if ((current_stack->processed_children + 1) >= octree->tree_num_internal_children[current_stack->node])
        {
            /* Update center of mass */
            octree->tree_mass[current_node] = current_stack->total_mass;
            octree->tree_center_of_mass_x[current_node] = current_stack->mass_times_distance[0] / current_stack->total_mass;
            octree->tree_center_of_mass_y[current_node] = current_stack->mass_times_distance[1] / current_stack->total_mass;
            octree->tree_center_of_mass_z[current_node] = current_stack->mass_times_distance[2] / current_stack->total_mass;

            Stack *parent = current_stack->parent;
            if (!parent)
            {
                break;
            }

            parent->total_mass += current_stack->total_mass;
            parent->mass_times_distance[0] += current_stack->mass_times_distance[0];
            parent->mass_times_distance[1] += current_stack->mass_times_distance[1];
            parent->mass_times_distance[2] += current_stack->mass_times_distance[2];

            current_stack = parent;
            (current_stack->processed_children)++;
            level--;
        }
    }

    /* Release unused memory */
    if (allocated_internal_nodes > (*num_internal_nodes_ptr))
    {
        int *restrict tmp_tree_num_particles = realloc(octree->tree_num_particles, *num_internal_nodes_ptr * sizeof(int));
        if (!tmp_tree_num_particles)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_num_particles"
            );
        }
        octree->tree_num_particles = tmp_tree_num_particles;

        int *restrict tmp_tree_num_internal_children = realloc(octree->tree_num_internal_children, *num_internal_nodes_ptr * sizeof(int));
        if (!tmp_tree_num_internal_children)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_num_internal_children"
            );
        }
        octree->tree_num_internal_children = tmp_tree_num_internal_children;

        int *restrict tmp_tree_first_particle_sorted_idx = realloc(octree->tree_first_particle_sorted_idx, *num_internal_nodes_ptr * sizeof(int));
        if (!tmp_tree_first_particle_sorted_idx)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_first_particle_sorted_idx"
            );
        }
        octree->tree_first_particle_sorted_idx = tmp_tree_first_particle_sorted_idx;

        int *restrict tmp_tree_first_internal_children_idx = realloc(octree->tree_first_internal_children_idx, *num_internal_nodes_ptr * sizeof(int));
        if (!tmp_tree_first_internal_children_idx)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_first_internal_children_idx"
            );
        }
        octree->tree_first_internal_children_idx = tmp_tree_first_internal_children_idx;

        double *restrict tmp_tree_mass = realloc(octree->tree_mass, *num_internal_nodes_ptr * sizeof(double));
        if (!tmp_tree_mass)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_mass"
            );
        }
        octree->tree_mass = tmp_tree_mass;

        double *restrict tmp_tree_center_of_mass_x = realloc(octree->tree_center_of_mass_x, *num_internal_nodes_ptr * sizeof(double));
        if (!tmp_tree_center_of_mass_x)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_center_of_mass_x"
            );
        }
        octree->tree_center_of_mass_x = tmp_tree_center_of_mass_x;

        double *restrict tmp_tree_center_of_mass_y = realloc(octree->tree_center_of_mass_y, *num_internal_nodes_ptr * sizeof(double));
        if (!tmp_tree_center_of_mass_y)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_center_of_mass_y"
            );
        }
        octree->tree_center_of_mass_y = tmp_tree_center_of_mass_y;

        double *restrict tmp_tree_center_of_mass_z = realloc(octree->tree_center_of_mass_z, *num_internal_nodes_ptr * sizeof(double));
        if (!tmp_tree_center_of_mass_z)
        {
            return WRAP_RAISE_ERROR(
                GRAV_MEMORY_ERROR,
                "Failed to reallocate memory for tree_center_of_mass_z"
            );
        }
        octree->tree_center_of_mass_z = tmp_tree_center_of_mass_z;
    }

    return make_success_error_status();
}

WIN32DLL_API ErrorStatus construct_octree(
    LinearOctree *restrict octree,
    const System *restrict system,
    const AccelerationParam *restrict acceleration_param,
    const double *restrict box_center,
    const double box_width
)
{
    ErrorStatus error_status;

    /* Check for pointers */
    if (!octree)
    {
        return WRAP_RAISE_ERROR(GRAV_POINTER_ERROR, "Octree pointer is NULL");
    }
    if (!system)
    {
        return WRAP_RAISE_ERROR(GRAV_POINTER_ERROR, "System pointer is NULL");
    }
    if (!acceleration_param)
    {
        return WRAP_RAISE_ERROR(GRAV_POINTER_ERROR, "Acceleration parameter pointer is NULL");
    }

    const int num_particles = system->num_particles;
    const double *restrict x = system->x;
    const double *restrict m = system->m;
    const int max_num_particles_per_leaf = acceleration_param->max_num_particles_per_leaf;

    /* Find the width and center of the bounding box */
    double center[3];
    if (!box_center || box_width <= 0.0)
    {
        calculate_bounding_box(center, &(octree->box_width), num_particles, x);
        box_center = center;
    }
    else
    {
        octree->box_width = box_width;
        center[0] = box_center[0];
        center[1] = box_center[1];
        center[2] = box_center[2];
    }

    /* Allocate memory */
    // Indices
    octree->particle_morton_indices_deepest_level = malloc(num_particles * sizeof(int64));
    octree->sorted_indices = malloc(num_particles * sizeof(int));
    if (!octree->particle_morton_indices_deepest_level || !octree->sorted_indices)
    {
        error_status = WRAP_RAISE_ERROR(
            GRAV_MEMORY_ERROR,
            "Failed to allocate memory for Morton indices and sorted indices"
        );
        goto err_indices_memory_alloc;
    }

    // Internal nodes
    // int allocated_internal_nodes = num_particles * 2 / max_num_particles_per_leaf;
    int allocated_internal_nodes = num_particles;

    octree->tree_num_particles = malloc(allocated_internal_nodes * sizeof(int));
    octree->tree_num_internal_children = malloc(allocated_internal_nodes * sizeof(int));
    octree->tree_first_internal_children_idx = malloc(allocated_internal_nodes * sizeof(int));
    octree->tree_first_particle_sorted_idx = malloc(allocated_internal_nodes * sizeof(int));
    octree->tree_mass = malloc(allocated_internal_nodes * sizeof(double));
    octree->tree_center_of_mass_x = malloc(allocated_internal_nodes * sizeof(double));
    octree->tree_center_of_mass_y = malloc(allocated_internal_nodes * sizeof(double));
    octree->tree_center_of_mass_z = malloc(allocated_internal_nodes * sizeof(double));
    if (
        !octree->tree_num_particles ||
        !octree->tree_num_internal_children ||
        !octree->tree_first_internal_children_idx ||
        !octree->tree_first_particle_sorted_idx ||
        !octree->tree_mass ||
        !octree->tree_center_of_mass_x ||
        !octree->tree_center_of_mass_y ||
        !octree->tree_center_of_mass_z
    )
    {
        error_status = WRAP_RAISE_ERROR(
            GRAV_MEMORY_ERROR,
            "Failed to allocate memory for internal nodes"
        );
        goto err_internal_nodes_memory_alloc;
    }

    /* Initialize the sorted indices */
    for (int i = 0; i < num_particles; i++)
    {
        octree->sorted_indices[i] = i;
    }

    /* Compute the 3D Morton indices at level 21 */
    compute_3d_particle_morton_indices_deepest_level(
        octree->particle_morton_indices_deepest_level,
        num_particles,
        x,
        center,
        octree->box_width
    );

    /* Sort the particles based on their Morton indices */
    error_status = WRAP_TRACEBACK(radix_sort_particles_morton_index(
        octree->particle_morton_indices_deepest_level,
        octree->sorted_indices,
        num_particles,
        MORTON_MAX_LEVEL
    ));
    if (error_status.return_code != GRAV_SUCCESS)
    {
        goto err_radix_sort;
    }

    /* Construct the octree */
    error_status = WRAP_TRACEBACK(helper_construct_octree(
        octree,
        allocated_internal_nodes,
        max_num_particles_per_leaf,
        num_particles,
        x,
        m
    ));
    if (error_status.return_code != GRAV_SUCCESS)
    {
        goto err_construct_octree;
    }

    return make_success_error_status();

err_construct_octree:
err_radix_sort:
err_internal_nodes_memory_alloc:
err_indices_memory_alloc:
    free_linear_octree(octree);

    return error_status;
}

WIN32DLL_API void free_linear_octree(LinearOctree *restrict octree)
{
    free(octree->particle_morton_indices_deepest_level);
    free(octree->sorted_indices);
    free(octree->tree_num_particles);
    free(octree->tree_num_internal_children);
    free(octree->tree_first_particle_sorted_idx);
    free(octree->tree_first_internal_children_idx);
    free(octree->tree_mass);
    free(octree->tree_center_of_mass_x);
    free(octree->tree_center_of_mass_y);
    free(octree->tree_center_of_mass_z);
}

WIN32DLL_API bool linear_octree_check_if_included(
    const int64 morton_index_i,
    const int64 morton_index_j,
    const int level
)
{
    return (morton_index_i >> (3 * (MORTON_MAX_LEVEL - level))) == (morton_index_j >> (3 * (MORTON_MAX_LEVEL - level)));
}
Morton curve

Figure 2: Morton curve for Morton index 0 to 7. This is the full curve for level 1, or the first \(\frac{1}{8}\) of the full curve at level 2, etc.

Here, we provide a detailed description on constructing a static linear octree using only linear arrays and Morton indices. To build a linear octree, we utilize the idea of Morton code (also known as Z-order or Morton space filling curve). Figure 2 shows a Morton curve at level 1 of the tree. The Morton index is calculated by encoding the spatial coordinate in binary format. For example, at level 1 we have \(x, y, z \in \{0, 1\}\). For \(x = 0, y = 0, z = 1\), we have the Morton index \(\underset{z}{1}\underset{y}{0}\underset{x}{0} \textnormal{ (binary)} = 4\). For \(x = 1, y = 1, z = 0\), we have the Morton index \(\underset{z}{0}\underset{y}{1}\underset{x}{1} \textnormal{ (binary)} = 3\). As we traverse into deeper level, we stack another three bits after the Morton index for each level. For example, a particle has a local Morton index 5 at level 1 and local Morton index 3 at level 2. The full Morton index at level 2 is obtained by

\[\begin{equation} %\label{} \overset{5}{\overbrace{\underset{z}{1}\underset{y}{0}\underset{x}{1}}} \overset{3}{\overbrace{\underset{z}{0}\underset{y}{1}\underset{x}{1}}} \textnormal{ (binary)} = 43. \end{equation}\]

Unlike a tree data structure, there is a limit for the depth of the octree. For 64-bit integer, there can only be \(\lfloor64 / 3 \rfloor = 21\) levels (excluding level 0) as it takes three bits for each level. This could become an issue for exascale simulations, but this could be resolved by using integers with more bits.

The Morton index could be calculated easily using bit-shift operations and loops. In our project, we fixed the Morton indices to 64-bit integers by default and uses magic numbers to compute the Morton indices at level 21 directly without a loop. The magic numbers are generated using the script by 2. Morton index on each level can then be retrieved with bit-shift operations.

Linear octree

Figure 3: Graphical illustration of linear octree. On the top, there are multiple aligned arrays. Each index represent one tree node, and each array represent a piece of information stored by the tree node. On below, we have the sorted Morton indices and the particle indices sorted with Morton indices. Since they are sorted, only the first index and the number of particles are needed to obtain the full particle list of each tree node. Tree node 0 is the root node with \(N\) particles. Tree node 1 and 2 are the proper successor of the root node, with 4 and 8 particles respectively.

Now, with the knowledge of Morton index, we can construct a linear octree building algorithm. The tree is represented with multiple aligned arrays, where each index to the arrays corresponds to one internal node. An illustration of the linear octree is provided in figure 3.

  1. Compute the Morton index for all particles at the deepest level (level 21 for 64-bit integers)
  2. Sort the Morton index (e.g. radix sort) along with the particle indices, so that we have an array of sorted Morton indices, and particle indices that corresponds to each Morton index.
  3. For each particle, starts from the root node,
    • Check if there are any particles in the corresponding suboctant of the current node. This can be done with binary search of the suboctant's Morton index at that level. (The binary search also tells us how many particles are in each child node.)

      • If not, instantiate a new child node for that suboctant by assigning a tree index. Backpropogate the mass and coordinate all the way to the root node.
      • Otherwise, traverse deeper into the child node.

Side note: We do not know beforehand how many internal nodes there will be. Therefore, the arrays might become full during construction. By using a dynamic array (one that doubles in size whenever it is full), we can build an octree with as many internal nodes as needed.

Tree traversal

Source code (Click to expand)
/**
 * \file acceleration_barnes_hut.c
 * \brief Implementation of Barnes-Hut algorithm
 * 
 * \author Ching-Yin Ng
 */

#include <math.h>
#include <stdio.h>

#ifdef USE_OPENMP
#include <omp.h>
#endif

#include "acceleration.h"
#include "linear_octree.h"

/**
 * \brief Helper function to compute acceleration
 * 
 * \param[out] a Array of acceleration vectors to be modified
 * \param[in] system Pointer to the gravitational system
 * \param[in] acceleration_param Pointer to the acceleration parameters
 * \param[in] octree Pointer to the linear octree
 */
IN_FILE void helper_compute_acceleration(
    double *restrict a,
    const System *restrict system,
    const AccelerationParam *restrict acceleration_param,
    const LinearOctree *restrict octree
);

WIN32DLL_API ErrorStatus acceleration_barnes_hut(
    double *restrict a,
    const System *restrict system,
    const AccelerationParam *restrict acceleration_param
)
{
    ErrorStatus error_status;

    /* Empty the input array */
    const int num_particles = system->num_particles;
    for (int i = 0; i < num_particles; i++)
    {
        a[i * 3 + 0] = 0.0;
        a[i * 3 + 1] = 0.0;
        a[i * 3 + 2] = 0.0;
    }

    /* Construct octree */
    LinearOctree octree = get_new_linear_octree();
    error_status = WRAP_TRACEBACK(construct_octree(
        &octree,
        system,
        acceleration_param,
        NULL,
        -1.0
    ));
    if (error_status.return_code != GRAV_SUCCESS)
    {
        return error_status;
    }

    /* Compute acceleration */
    helper_compute_acceleration(
        a,
        system,
        acceleration_param,
        &octree
    );

    /* Free memory */
    free_linear_octree(&octree);

    return make_success_error_status();
}

IN_FILE void helper_compute_acceleration(
    double *restrict a,
    const System *restrict system,
    const AccelerationParam *restrict acceleration_param,
    const LinearOctree *restrict octree
)
{
    typedef struct Stack
    {
        int node;
        int processed_children;
        struct Stack *parent;
    } Stack;

    /* Declare variables */
    const int num_particles = system->num_particles;
    const double *restrict x = system->x;
    const double *restrict m = system->m;
    const double G = system->G;
    const double softening_length = acceleration_param->softening_length;
    const double softening_length_squared = softening_length * softening_length;
    const double opening_angle = acceleration_param->opening_angle;
    const double opening_angle_squared = opening_angle * opening_angle;

    const double box_length = octree->box_width * 2.0;
    const int64 *restrict particle_morton_indices_deepest_level = octree->particle_morton_indices_deepest_level;
    const int *restrict sorted_indices = octree->sorted_indices;
    const int *restrict tree_num_particles = octree->tree_num_particles;
    const int *restrict tree_num_internal_children = octree->tree_num_internal_children;
    const int *restrict tree_first_particle_sorted_idx = octree->tree_first_particle_sorted_idx;
    const int *restrict tree_first_internal_children_idx = octree->tree_first_internal_children_idx;
    const double *restrict tree_mass = octree->tree_mass;
    const double *restrict tree_center_of_mass_x = octree->tree_center_of_mass_x;
    const double *restrict tree_center_of_mass_y = octree->tree_center_of_mass_y;
    const double *restrict tree_center_of_mass_z = octree->tree_center_of_mass_z;

#ifdef USE_OPENMP
    #pragma omp parallel for
#endif
    for (int i = 0; i < num_particles; i++)
    {
        const int idx_i = sorted_indices[i];    // For coalesced memory access
        const int64 morton_index_i = particle_morton_indices_deepest_level[idx_i];
        const double x_i[3] = {x[idx_i * 3 + 0], x[idx_i * 3 + 1], x[idx_i * 3 + 2]};

        Stack stack[MORTON_MAX_LEVEL + 1];
        Stack *current_stack = &(stack[0]);
        current_stack->processed_children = -1;
        current_stack->node = 0;
        current_stack->parent = NULL;
        double acceleration[3] = {0.0, 0.0, 0.0};

        int level = 1;

        /* Tree walk */
        while (true)
        {
            const int current_node = current_stack->node;
            for (int j = (current_stack->processed_children) + 1; j < tree_num_internal_children[current_node]; j++)
            {
                const int child_j = tree_first_internal_children_idx[current_node] + j;
                const int num_children_j = tree_num_internal_children[child_j];
                const int start_idx_j = tree_first_particle_sorted_idx[child_j];

                // If object i is included, then we need to traverse deeper
                const bool is_included = linear_octree_check_if_included(
                    morton_index_i,
                    particle_morton_indices_deepest_level[sorted_indices[start_idx_j]],
                    level
                );

                // Check Barnes-Hut criteria
                if (!is_included)
                {
                    const double R[3] = {
                        x_i[0] - tree_center_of_mass_x[child_j],
                        x_i[1] - tree_center_of_mass_y[child_j],
                        x_i[2] - tree_center_of_mass_z[child_j]
                    };
                    const double box_length_j = box_length / (2 << level);
                    const double norm_square = R[0] * R[0] + R[1] * R[1] + R[2] * R[2];

                    // Check if box_length_j / norm < opening_angle
                    // Use squared values to avoid sqrt
                    if ((box_length_j * box_length_j) < opening_angle_squared * norm_square)
                    {
                        const double R_norm = sqrt(
                            norm_square + softening_length_squared
                        );

                        const double temp_value = G * tree_mass[child_j] / (R_norm * R_norm * R_norm);
                        acceleration[0] -= temp_value * R[0];
                        acceleration[1] -= temp_value * R[1];
                        acceleration[2] -= temp_value * R[2];

                        current_stack->processed_children = j;
                        continue;
                    }
                }

                /* Traverse deeper */

                /* Leaf node */
                if (num_children_j <= 0)
                {
                    const int num_particles_j = tree_num_particles[child_j];
                    for (int k = 0; k < num_particles_j; k++)
                    {
                        const int idx_j = sorted_indices[start_idx_j + k];
                        if (idx_i == idx_j)
                        {
                            continue;
                        }

                        // Calculate \vec{R} and its norm
                        const double R[3] = {
                            x_i[0] - x[idx_j * 3 + 0],
                            x_i[1] - x[idx_j * 3 + 1],
                            x_i[2] - x[idx_j * 3 + 2]
                        };
                        const double R_norm = sqrt(
                            R[0] * R[0] + 
                            R[1] * R[1] + 
                            R[2] * R[2] +
                            softening_length_squared
                        );

                        // Calculate the acceleration
                        const double temp_value = G * m[idx_j] / (R_norm * R_norm * R_norm);
                        acceleration[0] -= temp_value * R[0];
                        acceleration[1] -= temp_value * R[1];
                        acceleration[2] -= temp_value * R[2];
                    }

                    current_stack->processed_children = j;
                    continue;
                }

                /* Internal node */
                else
                {
                    Stack *new_item = &(stack[level + 1]);
                    new_item->node = child_j;
                    new_item->processed_children = -1;
                    new_item->parent = current_stack;

                    current_stack = new_item;
                    level++;
                    break;
                }
            }

            if ((current_stack->processed_children + 1) >= tree_num_internal_children[current_stack->node])
            {
                Stack *parent_stack = current_stack->parent;
                if (!parent_stack)
                {
                    break;
                }

                current_stack = parent_stack;
                current_stack->processed_children += 1;
                level--;
            }
        }

        a[idx_i * 3 + 0] = acceleration[0];
        a[idx_i * 3 + 1] = acceleration[1];
        a[idx_i * 3 + 2] = acceleration[2];
    }
}

To compute the acceleration, we use a stack to traverse the tree recursively:

  1. Push the root node to the stack.
  2. While the stack is not empty:
    • 2.1 Pop the top node from the stack.
    • 2.2 If the node is a leaf node, compute the acceleration directly.
    • 2.3 If the node is not a leaf node, check if it passes the opening angle criterion. If yes, compute the acceleration using the center of mass of the node. Otherwise, push all child nodes to the stack.

Danger

We need to check whether the current node is included in the branch to avoid self-interaction. This can be done by a simple check of the Morton index.

Benchmark

Here we provide a simple benchmark of the Barnes-Hut algorithm compared to the brute-force algorithm. It was done on Macbook Air M1. The brute-force algorithm spent 18.6 seconds on \(N = 10^5\), while the Barnes-Hut algorithm with \(\theta = 1\) and \(\theta = 0.5\) spent \(7.94\) s on \(N = 10^6\) and \(18.2\) s on \(N = 10^7\) respectively. This shows that Barnes-Hut algorithm could handle 10-100 times more particles than the brute force algorithm.

(For the benchmark, the particles are uniformly distributed where \(\{x, y, z\} \sim U(-1, 1)\))

Baranes-Hut benchmark

  1. Josh Barnes and Piet Hut. A hierarchical \(O\)(\(N\) $\log $ \(N\)) force-calculation algorithm. Nature, 324(6096):446–449, December 1986. URL: https://www.nature.com/articles/324446a0 (visited on 2025-01-19), doi:10.1038/324446a0

  2. Gabriel (https://stackoverflow.com/users/293195/gabriel). How to compute a 3d morton number (interleave the bits of 3 ints). Stack Overflow. version: 2021-09-18. URL: https://stackoverflow.com/a/18528775, arXiv:https://stackoverflow.com/a/18528775

Comments